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Measuring the Predictable
Variation in Stock and Bond
Returns

Chris Kirby
Rice University
University of Texas at Dallas

Recent studies show that when a regression
modelis usedto forecast stock and bond returns,
the sample R? increases dramatically with the
length of the return borizon. These studies ar-
8ue, therefore, that long-borizon returns are
bigbly predictable. This article presents evidence
that suggests otherwise. Long-borizon regres-
sions can easily yield large values of the sam-
Dle R?, even if the population R? is small or zero.
Moreover, long-borizon regressions with a small
or zero population R? can produce t-ratios that
might be interpreted as evidence of strong pre-
dictability. In general, the analysis provides little
support for the view that long-borizon returns
are bighly predictable.

The theory that stock and bond markets process in-
formation efficiently is a hallmark of modern finance.
Although the traditional formulation of the efficient
markets hypothesis rules out the ability to predict
returns, most financial economists would probably
agree that this view of efficiency is outdated. Recent

A previous version of this article was circulated under the title “A Multivari-
ate Analysis of the Predictable Variation in Stock and Bond Returns.” The
current version is based on ideas developed in my dissertation at Duke Uni-
versity. I thank the members of my committee—Cam Harvey, David Hsieh,
Tom Smith, George Tauchen, and Bob Whaley—for providing. valuable
support and suggestions. I also appreciate the comments and suggestions
of Phillip Braun, Doug Foster, Andy Lo (the editor), Barbara Ostdiek, an
anonymous referee, seminar participants at Duke University, and session
participants at the 1993 meetings of the Western Finance Association. Part of
this research was completed while the author was visiting the University of
Michigan and the University of Maryland. Address correspondence to Chris
Kirby, School of Management, University of Texas at Dallas, Richardson,
TX 75083-0688.

The Review of Financial Studies Fall 1997 Vol. 10, No. 3, pp. 579-630
© 1997 The Review of Financial Studies 0893-9454/97/$1.50



The Review of Financial Studies /v 10 n 3 1997

advances in asset pricing theory, along with mounting empirical evi-
dence of predictability, have persuaded the majority of researchers to
abandon the constant expected returns paradigm. Nevertheless, cer-
tain aspects of the empirical research on predicting returns remain
controversial. A number of studies, for example, report that stock and
bond returns appear to exhibit a striking degree of predictability over
long horizons. This evidence is not necessarily inconsistent with the
view that markets are efficient, but it does seem to contradict much
of the conventional wisdom in this regard.

Almost all of the research on predicting long-horizon returns falls
under the general heading of regression analysis. The basic strategy
adopted in most studies is to regress overlapping returns for various
holding periods on a set of predetermined instrumental variables. In
the majority of cases, the authors of such studies treat the sample R?
from the regression specification as a measure of the economic sig-
nificance of the predictable component of returns. Fama and French
(1988a), for example, argue that dividend yields explain a large frac-
tion of the total variation in long-horizon stock returns. To support
this claim they show that the sample R? increases from around 3% for
monthly returns to well over 25% for four-year returns. Campbell and
Shiller (1988) cite similar evidence in their study of the link between
dividend yields, earnings:price ratios, and stock returns. They report
large values of the sample R? for both 3-year and 10-year returns
and conclude, like Fama and French (1988a), that long-horizon stock
returns are indeed highly predictable.

The apparent pattern of strong predictability at long horizons ex-
tends to other classes of assets as well. In a follow-up to their initial
study, Fama and French (1989) demonstrate that two interest rate
variables—a term spread and a default-risk spread—seem to explain
a substantial fraction of the long-term variation in bond returns. Again
they observe a dramatic increase in the sample R? as the return hori-
zon grows from one month to four years. The sample R? is usually less
than 10% for monthly and quarterly bond returns, but often exceeds
30% for returns measured over longer horizons. Fama and French
attribute this increase in explanatory power at long horizons to low-
frequency oscillations in expected returns. They further contend that
these low-frequency oscillations reflect the rational response of in-
vestors to slowly changing business conditions.

This tendency to treat the sample R? as a measure of the economic
significance of predictability is not surprising. After all, the approach
does have a substantial degree of intuitive appeal. The important point
to remember, however, is that the least-squares theory used to justify
this practice rests largely on the assumption that the error term for the
regression model can be treated as an independently and identically
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distributed normal random variable. Outside the context of the classi-
cal least-squares setting, the distributional properties of the sample R?
are largely unknown and its relation to formal tests for predictability
is far from clear. It seems, therefore, that the authors of some of the
most heavily cited studies of long-horizon predictability overlook an
important consideration. Large values of the sample R? might actually
be consistent with the hypothesis that long-horizon stock and bond
returns are either unpredictable or only slightly predictable.

The idea that large values of the sample R? can be statistically
insignificant is not new. Granger and Newbold (1974) perform sim-
ulations where both the dependent and independent variables in a
regression model follow a random walk. Their simulations often yield
large values of the sample R? even though the population value is
zero by construction. In a more recent study, Goetzmann and Jorion
(1993) question the evidence that dividend yields have the power to
forecast stock returns. They use a Monte Carlo approach to examine
the empirical distribution of various regression criteria under the null
hypothesis that asset returns are unpredictable. In simulations with
data similar to that of Fama and French (1988a), the mean value of
the sample R? increases from less than 1% for monthly returns to
around 12% for four-year returns. As a result, Goetzmann and Jorion
argue that there is little evidence to indicate that dividend yields can
be used to forecast stock returns.

This article offers a new perspective on the evidence that stock and
bond returns are highly predictable over long horizons. The analysis
draws on standard asymptotic arguments to derive the limiting distri-
bution of the sample R? under both the null hypothesis that returns
are unpredictable and the alternative hypothesis that returns contain
a predictable component. Once the features of this distribution are es-
tablished, it becomes clear that serial correlation and conditional het-
eroscedasticity can have a pronounced effect on the sampling prop-
erties of the R? statistic. The key feature of the distribution can be
summarized as follows: serial correlation, including the type induced
by the use of overlapping returns, generally leads to a substantial
increase in the standard error of the sample R?. Thus, large realiza-
tions of the sample R? may not, in and of themselves, indicate that
long-horizon stock and bond returns are highly predictable.

The empirical investigation confirms that this is the case. Although
the sample R? does increase with the length of the return horizon,
the associated standard errors reveal that the long-horizon results are
quite imprecise. In general, the inference that long-horizon returns
are highly predictable does not appear to be justified. Evidence from
a Monte Carlo experiment lends additional credence to the empirical
findings. The t-ratios for the slope coefficients are found to reject the
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null hypothesis far too often in samples of the size typically used in
long-horizon studies. Moreover, regression models with a small pop-
ulation R? can produce #-ratios that might be interpreted as evidence
of strong predictability. All of the results point to a simple conclu-
sion: it is vital to consider the distributional properties of the #-ratios
and sample R? when drawing inferences about the ability to predict
long-horizon returns.

. Asymptotic Theory for Long-Horizon Regressions

Over the years, academics and practitioners alike have devoted a great
deal of effort to the search for predictable variation in stock and bond
returns [see, for example, Fama and Schwert (1977), Rozeff (1984),
Keim and Stambaugh (1986), Campbell (1987), Fama and Bliss (1987),
Campbell and Shiller (1988), Fama and French (1988a, b, 1989), Je-
gadeesh (1991), Ferson and Harvey (1991), and Bekaert and Hodrick
(1992)]. Although the bulk of the empirical research on forecasting
returns uses monthly data, a review of the recent literature reveals an
increasing number of studies that focus on predictability over longer
horizons. These long-horizon studies typically have a number of char-
acteristics in common: (i) they use sample sizes that are relatively
small; (ii) they assess the ability to predict returns based on a regres-
sion specification that, more often than not, uses overlapping returns;
and (iii) they treat the sample R? from the regression model as a mea-
sure of the economic significance of the predictable component of
returns. It is important, therefore, to understand how the use of small
sample sizes and overlapping returns affects the distributional prop-
erties of the sample R?. The analysis begins with an overview of the
asymptotic theory for dynamic linear models. All proofs appear in the
Appendix.

1.1 Asymptotic normality of the slope coefficients

There are a number of different ways to assess whether asset re-
turns contain a predictable component. As a general rule, however,
researchers tend to use some type of regression specification. The
most common approach is to estimate a multiple regression model of
the form

Frei = Qe+ 3,0, + Erve, ¢))

-

i=1

where Zf=1 7141 is the k-period excess return on a portfolio of assets,
Z; is the date ¢ realization of a m x 1 vector of instrumental variables,
and &,y is a mean-zero error term. Because the regressors for the
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model shown in Equation (1) are stochastic, the least-squares estima-
tor of the vector of slope coefficients is given by

ey

A1,
ﬂk = 2:z,?:a'z:/e’ (2)

where 3., denotes the sample analog of the variance-covariance ma-
trix of the instruments, and & ,; denotes the m x 1 vector of sample
covariances. The limiting distribution of the least-squares estimator is
provided by the following theorem.

Theorem 1.1. Let{7;, Z;} be a stationary and ergodic process. Further
assume that the regularity conditions given by Hansen (1982) are
satisfied. Then the limiting distribution of the least-squares estimator

of By, 1s
VT By — By) > N, V), 3)

where T denotes the number of observations in the data set. The
variance-covariance matrix 'V is given by

2]

V= 2221 Z E[§t+k§t+k—j(zt - “z)(zt—j - Hz)/] EEZ, (4)

i—— 00

where €y p—j = (Zf=1 Tryioj — Ol — Zi_jﬂk), and p, denotes the ex-
Dpected value of the vector z;.

It certainly comes as no surprise that the limiting distribution of
the least-squares estimator is multivariate normal. But one feature of
the distribution in Equation (3) deserves close attention. Note how the
autocovariance structure of the disturbance vector 1, , = &:4£(Z;—p,)
affects the variance-covariance matrix of the estimator. This relation
is important because the matrix V plays a large role in determining
the limiting distribution of the sample R?. To see why, recall that the
sample R? can be written as a quadratic form in the least-squares
estimator of the vector of slope coefficients.! If serial correlation or
heteroscedasticity make it impossible to obtain a precise estimate of
Be, then the sample R? will reflect a similar degree of imprecision.
Thus, the statistical properties of the disturbance vector n,,, have a

! The sample R? is equal to the sample variance of the fitted values divided by the sample variance
of the dependent variable. Applying this definition to the model shown in Equation (1) yields:

Rz — (ﬂkfz:ﬂk) ,
k

-where &7 denotes the sample variance of the k-period excess return on the portfolio.
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great deal to do with the distributional properties of the sample R%.
One of the goals of this article is to develop formal theoretical results
that clearly illustrate this relation. A natural first step in this process
is to consider the case where the assumptions of classical regression
analysis are satisfied.

1.2 Serially uncorrelated homoscedastic disturbances

Let the null hypothesis H, be that asset returns are unpredictable. In
addition, assume that the disturbance vector 7, is serially uncorre-
lated and that &,,, is conditionally homoscedastic.? Within the context
of the regression model shown in Equation (1), the testable implica-
tion of the null is that 3, = 0. When we impose the null hypothesis
and incorporate the stated assumptions, the limiting distribution of
the sample R? takes the form given in the following theorem.

Theorem 1.2. Let{7;, Z;} be a stationary and ergodic process. Further
assume that the regularity conditions of Hansen (1982) are satisfied,
that cov(4 g, Nryp—e) = 0 forallt # 0, and that var(f, ;) = 62,
where agz denotes the variance of €, . Then, under the null hypotbesis
Hy, the limiting distribution of the sample R* for the model shown in
Equation (1) is

d
TR 4 X2, )

where x2, denotes a central chi-square distribution with m degrees of
Sfreedom.

It is not difficult to see why the quantity TR}, is asymptotically dis-
tributed as a chi-square random variable. Under the conditions stated
in the theorem, the matrix V in Equation (4) reduces to 0/}, where
o} denotes the variance of the k-period excess return. As a result, the

Wald statistic for testing the null hypothesis is

. A’ﬁ ~
Wp=T ﬂL%ﬂ , ©)
Op

where 67 denotes the sample analog of o7. Once the ratio inside
the parentheses is recognized as the sample R? for the regression
model of Equation (1), the distributional results of Theorem 1.2 follow
immediately.3

2 One scenario consistent with this assumption is that z, is serially uncorrelated and distributed
independently of #.; for all i.

31t is well known that, under the null hypothesis, the Wald statistic in Equation (6) converges in
distribution to a chi-square random variable with m degrees of freedom.
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The asymptotic results shown in Equations (5) and (6) bear a dis-
tinct resemblance to the small sample results for the multivariate nor-
mal regression model. This similarity stems in large part from the as-
sumption that (i) 7,,, is serially uncorrelated; and (ii) the error term
for the regression model is conditionally homoscedastic. In situations
where these assumptions are plausible, the sample R? represents an
appealing criterion for evaluating whether the null hypothesis of no
predictability is credible. To obtain significance points for the sample
R?, we simply divide the values for the appropriate chi-square dis-
tribution by the number of observations used in the analysis. If the
observed value of the sample R? exceeds the cutoff, then the null
hypothesis that asset returns are unpredictable is rejected. It is impor-
tant to keep in mind, of course, that tests performed in this manner
are valid only if the aforementioned restrictions on ), and &, are
satisfied. The effect of relaxing these restrictions is considered in Sec-
tion 1.3.

1.3 Autocorrelated heteroscedastic disturbances

Stock and bond returns are known to exhibit a marked degree of
conditional heteroscedasticity, and overlapping returns are autocor-
related by construction. As a consequence, the sampling theory for
long-horizon models must be able to accommodate both serial cor-
relation and conditional heteroscedasticity of unknown form. If the
previous analysis is modified to permit the sorts of intertemporal de-
pendence and conditional heterogeneity that may exist in data gener-
ated by a stationary and ergodic process, then the limiting distribution
of the sample R? under null hypothesis H, takes the form given in
Theorem 1.3.

Theorem 1.3. Let{7;, 7;} be a stationary and ergodic process. Further
assume that the regularity conditions given by Hansen (1982) are
satisfied. In addition, allow 7)., and &,y to exbibit the type of serial
correlation and conditional beteroscedasticity that is consistent with
data generated by a stationary and ergodic process. Then, under the
null bypotbesis Hy, the limiting distribution of the sample R? for the
model shown in Equation (1) is

TR2 S 0, @)

where Q denotes the general distribution of a quadratic form in a
multivariate normal random vector. The mean and variance of Q are

He=1tr(0;VE;:,)  and ol =21r(0;VE)% (8

.where tr(-) denotes the trace operator.
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Given the results of Theorem 1.3, the potential consequences of
serial correlation and conditional heteroscedasticity begin to emerge
more clearly. First, consider the traditional scenario where 7, is seri-
ally uncorrelated and &, is conditionally homoscedastic. Under the
null, the V matrix in Equation (8) is given by ¢/X;], so the mean
and variance of Q are equal to m and 2m, the values for a chi-square
distribution with m degrees of freedom. Now let the disturbances
display serial correlation and/or conditional heteroscedasticity, and
notice how the analysis changes. One difference, of course, is that
the matrix V becomes more complex and the results grow less ana-
lytically tractable. More importantly, though, the mean and variance
of Q take on values that may be far removed from those of a chi-
square distribution. This shift in the mean and variance of the limiting
distribution of 7R; suggests a possible explanation for reports that
long-horizon returns are highly predictable.

Studies that examine long-horizon predictability typically use in-
strumental variables that are highly persistent. The combination of
highly persistent instruments and overlapping returns induces strong
serial correlation in the least-squares disturbance vector. As a result,
the OLS standard errors for the model understate the variance of the
least-squares estimator of the slope coefficients. Although researchers
have long recognized that the OLS f-ratios are unreliable in long-
horizon regressions, many fail to make the connection between in-
flated t-ratios and the sample R?. The easiest way to illustrate the
relation is to consider a long-horizon model with a single regressor.
In this case, the sample R* can be written as 2, /(1 + #2,), where #,;
denotes the OLS t-ratio for a test of the null hypothesis that the least-
squares estimator of the slope coefficient is equal to zero. It stands to
reason, therefore, that if the OLS t-ratio is inflated, then the sample
R? will also be misleading.

The intuition for the single-regressor case carries over to the multi-
ple regression setting as well. If the OLS #-ratios are misleading under
the null, then the researcher has a clear signal that the traditional
interpretation of the sample R? is no longer valid. One potential so-
lution to this problem is to use the limiting distribution given in The-
orem 1.3 to test whether the sample R? is significantly different from
zero. Unfortunately, this strategy is not really practical given the com-
plex nature of the distribution in question. There is, however, a related
approach that can be implemented quite easily. First, use standard,
large-sample, chi-square tests to evaluate whether the null hypothesis
of no predictability is credible. In the event that such tests indicate a
rejection of the null, then the limiting distribution of the sample R?
under the alternative hypothesis can be used to draw inferences about
the size of the predictable component of returns. The limiting distri-
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bution of the sample R? under the alternative hypothesis is discussed
in Section 1.4.

1.4 Measuring predictability under the alternative

Even if a researcher can reliably reject the null hypothesis that returns
are unpredictable, the potential effects of serial correlation and con-
ditional heteroscedasticity remain an important consideration when
using the sample R? to measure predictability. Let Hy, the alterna-
tive hypothesis, be that asset returns are to some extent predictable
over time. Any inference concerning the economic significance of the
sample R? from a predictive regression should be drawn with due con-
sideration for the limiting distribution of this criterion under Hy. The
limiting distribution for general situations is provided by Theorem 1.4.

Theorem 1.4. Let{#;, Z;} be a stationary and ergodic process. Further
assume that the regularity conditions given by Hansen (1982) are
satisfied. In addition, allow 7,,, and & exhibit the type of serial
correlation and conditional beteroscedasticity that is consistent with
data generated by a stationary and ergodic process. Define &, the
disturbance term associated with estimating the population R*, as

b 2
Ene=(1-pp) (Z Frei — uk> — & ©)
i=1

where iy, is the expected value of the k-period return, and p}, denotes
the population value of the k-period R*. Then, under the alternatwe
hypothesis Hy, the limiting distribution of the sample R* for the model
shown in Equation (1) is

VTR — p2) 3 N0, 02), (10)

with o2 given by

Ok

E i {Ef-ﬁ-két-}-k—j] , (11)

where §t+/e—j =1~ Pi)(Zle Fricj — ME)> — 5,2+k_]--

Theorem 1.4 indicates that under Hy the sample R? is asymptoti-
cally distributed as a normal random variable. The approach used to
derive this result is straightforward. Under the alternative hypothesis,
the population value of R? lies somewhere between zero and one.
Thus, we can easily estimate this population value via the general-
ized method of moments (GMM), and it follows immediately from
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the associated distributional theory that the limiting distribution of
VT(R? — p?) is normal.

Even though the limiting distribution of the sample R? under Hy is
normal, the fact that the R? criterion is strictly nonnegative suggests
that the rate of approach to normality is likely to be relatively slow.
It should be possible to improve the approximation, however, by
exploiting well-known small sample results. Consider, for example,
the scenario where the sequence {71, Z;} represents an i.i.d. sample
from a multivariate normal distribution. Anderson (1984) shows that
in this case

VTR = pD) 5 N, 4p2(1 — pD)?). (12)

The important thing to note about the distribution in Equation (12) is
that the variance is a direct function of the population value of R2.
As a result, the t-ratio for the sample R? tends to exhibit substantial
departures from normality in small samples. An easy way to improve
the small sample performance under these circumstances is to perform
a variance-stabilizing transformation.

Suppose we let f(R?) denote the function /n((1+ R)/(1 — Ry)),
where R, is the sample multiple-correlation coefficient for a one-
period return horizon. It follows by application of the delta method
that

FR) L N(f(p3), 1/ 7). 13)

Thus, the transformation yields an asymptotic distribution whose vari-
ance is independent of the population value of R?. Because of this
property, there is good reason to suspect that the #-ratio for f(R?) will
perform better in small samples than will the t-ratio associated with
the original distribution.

Now take the more general scenario where the data can exhibit
serial correlation, conditional heteroscedasticity, and nonnormalities.
Although the above transformation may no longer achieve complete
variance stabilization, it still has the potential to improve inferences
about the magnitude of the population R?. The basic idea is as follows.
First compute the quantity f (Rfe) = %ln((l + Rp)/(1 — Ry)). Then
construct the standard error of f (Ri) using the delta method. The
sample multiple correlation coefficient can be written as

R = tanh(f(R})), (14)
where tanh(-) denotes the hyperbolic tangent. Because the hyperbolic

tangent is a2 monotonic transformation, it follows that an approximate
(1 — ¢)% confidence interval for the sample multiple correlation coef-
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ficient is
tanh(f(-) — ®(c/2)d7) < pr < tanh(f(-) + ®(c/2)dy), (15)

where ®(:) and 65 denote the cumulative distribution function of
a standard normal random variable and the standard error of f(-),
respectively.

. Data and Econometric Methodology

The data used for the empirical analysis mirrors that of Fama and
French (1989). This choice of data is motivated by a simple consid-
eration. The Fama and French article is one of the most widely cited
studies of long-horizon predictability, so it makes sense to relate the
current analysis directly to their work. The dataset is comprised of
monthly holding period returns on portfolios of common stock and
bonds. The data begin in January 1927 and end in December 1987
(732 observations). All portfolio returns are calculated in excess of
the one-month return for the Treasury bill that is closest to 30 days
to maturity. Excess returns for horizons exceeding one month are
computed by cumulating monthly excess returns.

2.1 The portfolios

The long-term predictability of common stock returns is evaluated
using two different market indices: the equal-weighted and value-
weighted portfolios constructed from all the firms listed on the New
York Stock Exchange (NYSE). Return data for the two indices are pro-
vided by the Center for Research in Security Prices (CRSP) at the Uni-
versity of Chicago. The value-weighted index is skewed toward stocks
that have a high market capitalization, while the equal-weighted index
gives equal representation to all firms. Fama and French (1989) argue
that these two portfolios provide a convenient way to study how firm
size affects the ability to predict returns.

The bond portfolio returns are drawn from a database maintained
by Ibbotson Associates. This database contains monthly holding pe-
riod returns on a number of different portfolios of corporate bonds.
The five portfolios used in the empirical analysis are constructed
from bonds rated Aaa, Aa, A, Baa, and below Baa (LG, low-grade)
by Moody’s. Bond portfolio returns are calculated by taking a price
weighted average of the individual returns for the constituent bonds.
The average time to maturity of the bonds in each portfolio is typically
greater than 10 years.

4 See Chapter 4 of Anderson (1984) for a discussion of this method of drawing inferences within
the context of normal correlation theory.
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2.2 The Instruments

The instrumental variables used in the long-horizon regressions are
the same as those used by Fama and French (1989), but the data used
to construct the instruments are drawn from different sources.” The
first instrument is the dividend yield on the S&P composite stock index
(DIV). Data on this instrument are obtained from Standard and Poor’s
Current Statistics. The second instrument is a term spread (TERM). It
is calculated by subtracting the annualized yield on a one-month Trea-
sury bill from the annualized yield on Moody’s Aaa bond portfolio.
The final instrument is a default risk spread (DEF). It is equal to the
annualized yield on Moody’s Baa bond portfolio minus the annual-
ized yield on Moody’s Aaa bond portfolio. The data used to construct
both the term spread and the default risk spread are drawn from
Moody’s Industrial Manual. All three instruments are constructed us-
ing monthly observations.

Table 1 provides descriptive statistics for the excess returns and in-
strumental variables. The statistics for the monthly observations are fa-
miliar from other studies that use similar data. In general, the monthly
stock and bond returns exhibit only a modest degree of serial cor-
relation. The instrumental variables, on the other hand, are highly
autocorrelated. Note that the first-order autocorrelation coefficient for
both DIV and DEF exceeds 0.95. It appears, however, that the serial
correlation of these two variables decays toward zero at a rate that is
consistent with the view that each of the time series is stationary. The
results for the annual data are similar.

2.3 The long-horizon regressions

The key claim of Fama and French (1989) is that three instruments—a
term spread, a default spread, and the dividend yield on the NYSE
index—explain a large fraction of the variation in long-horizon stock
and bond returns. This claim stems from the fact that when the portfo-
lio returns are regressed on various combinations of the three instru-
ments, the sample R? increases from around 3% for monthly returns
to well over 25% for four-year returns. Therefore, the first step is to
replicate these regressions by estimating a linear model of the form

k
Z Froi = ok + 2,8 + Ertk (16)
=1

Fama and French (1989) use the dividend yield on the NYSE index instead of the dividend yield
on the S&P composite index, and their term spread and default spread are constructed from yield
data maintained by Ibbotson Associates. The advantage of using the Moody’s yield data is twofold.
First, it is much more widely available than the Ibbotson data and has therefore been used in a
number of well-known studies of predictability. Second, its use provides a good check on the
general robustness of the Fama and French (1989) results.
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Table 1
Summary statistics for the excess returns and instrumental variables

Autocorrelations
Mean SD 1 2 3 4 5 6 7 8

Panel A: Monthly data

VW  0.47 5.77 0.11 —-0.01 -0.11 0.03 010 -0.01 0.01 0.04
EW 075 7.73 0.16 0.02 —-0.10 —0.04 0.04 —0.02 0.02 0.01
Aaa 0.06 159 0.19 0.00 -0.03 0.00 0.12 0.04 —0.04 0.01
Aa 0.05 1.56 0.24 0.02 0.00 0.00 0.16 0.03 —0.08 0.00
A 0.07 196 0.24 002 -0.13 -0.01 0.16 0.06 —0.02 0.01
Baa 0.12 217  0.22 0.01 -0.14 -—0.02 0.13 0.08 -0.03 0.01
LG 0.19 322 019 0.03 -0.13 —-0.08 0.05 0.07 0.08 0.03
DIV  4.46 1.26 097 0.93 0.89 0.86 0.83 0.80 0.77 0.73
TERM 2.00 136 0.84 0.76 0.73 0.67 0.64 0.64 0.61 0.61
DEF 1.21 0.80 097 0.94 0.90 0.89 0.88 0.87 0.86 0.84
Panel B: Annual data

VW  5.66 20.77 0.10 -019 -005 -0.12 -0.02 -0.03 0.12 0.06
EW 8.96 29.28 0.14 -018 -0.10 —-0.18 -—0.13 -0.14 0.07 0.04
Aaa 0.73 664 021 0.05 —-006 —0.11 -—0.17 0.06 —-0.03 —0.05
Aa 0.65 677 020 —-0.05 -0.14 —-0.16 —0.13 0.03 -—-0.02 -0.11
A 0.86 832 025 -015 -024 -014 —0.03 0.11 -0.05 -011
Baa 143 859 024 —-0.13 —-024 —-014 —0.02 0.13 —-0.02 —0.07
LG 2.23 1227 032 —-003 -021 -0.21 —0.05 0.11 0.04 0.09
DIV 4.60 1.35 0.57 0.29 0.28 0.26 0.27 0.35 0.30 0.29
TERM 1.90 1.45 0.48 0.20 0.03 0.04 0.22 0.26 0.32 0.12
DEF 1.27 087 0.79 0.55 0.37 0.29 0.29 0.36 0.33 0.28

The return data cover the 61-year interval from January 1927-December 1987 (732 monthly
observations). Monthly excess returns are defined as the difference between the continuously
compounded one-month return on the stock or bond portfolio and the continuously compounded
return on a one-month Treasury bill. Annual excess returns are obtained by cumulating monthly
excess returns. The stock portfolios are the value-weighted and equal-weighted NYSE indices.
Ibbotson forms the bond portfolios by sorting the bonds according to their Moody’s ratings: Aaa,
Aa, A, Baa, and below Baa (LG, low grade). There are three instrumental variables: the dividend
yield on S&P composite index (DIV), the yield on Moody’s Aaa bond portfolio less the one-month
Treasury bill rate (TERM), and the yield on Moody’s Baa bond portfolio less the yield on Moody’s
Aaa bond portfolio (DEF). Both TERM and DEF are constructed using annualized yields. The
observations on the instruments are lagged by one period (i.e., one month in panel A and one
year in panel B).

for return horizons of one month, one quarter, and one to four years.
Monthly excess returns are defined as the difference between the
continuously compounded one-month return on the stock or bond
portfolio in question and the continuously compounded return on
a one-month Treasury bill. Excess returns for longer return horizons
are obtained by cumulating monthly excess returns. The quarterly and
one-year returns are nonoverlapping. The two-, three-, and four-year
returns are overlapping annual observations.

The methodology used to estimate the regressions is designed to
be representative of what is typically seen in the long-horizon litera-
ture. Most long-horizon studies use OLS to estimate the models and
then rely on some type of correction to obtain consistent standard
errors. This approach can easily be nested within a GMM framework.
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Consider, for example, an econometric specification based on the dis-
turbance vector,

h(x;, ) = ( Zf:l Tipi— Qg — zltlak ) , (17)

k.~ ~ ~
(Ei=1 Vivi — Qp — Z/;:Bk)zt

where x; = [Zf;l rri» Z,) and 0 = [y, B)). This disturbance vector
contains the OLS normal equations. Because the econometric system
in Equation (17) is exactly identified, the GMM estimator of @ is the
value that sets 1/ Tzf:l h(-) equal to zero. It is easy to see that this
value is obtained by replacing each element of the vector € with its
sample analog. The sample analog of the vector 3y, is the least-squares
estimator 3,, so the estimates of the slope coefficients obtained using
the GMM procedure are identical to those that result from fitting a
multiple regression model to the data.

2.4 Tests for predictability

Tests of the null hypothesis that returns are unpredictable are con-
structed based on the limiting distribution of the GMM estimator.°
This distribution takes the form

JT@ -0) 4 N©, D'ST'D)), (18)
where
Oh(%,, 0 e 5 5 )
D=E [%] and S =j;°o Elh(%,, O)h(¥,—;, 0)]. (19)

If @ is partitioned as [8] 0)] where 6, = B, and the matrix =
(D'S'D)7! is partitioned accordingly, then the Wald statistic,

Wp = T(0,95)8,) (20)

converges to a chi-square random variable with m degrees of freedom
under the null hypothesis that returns are unpredictable. It is shown
in the Appendix that Q,, is the V matrix of Theorem 1.1. Although
V is generally unknown, it can be replaced by a consistent estimator
without affecting the limiting distribution of the test statistic.
Computing the GMM estimator of the slope coefficients is straight-
forward, but the approach used to construct the variance-covariance

% In the discussion that follows it is assumed that ¥, is generated by a stationary, ergodic process
and that the second moment matrix of h(-) exists and is finite. This assumption, along with the
regularity conditions given by Hansen (1982), is sufficient for the asymptotic distribution theory
of GMM to hold.
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matrix of this estimator warrants further discussion. The monthly,
quarterly, and annual regressions employ nonoverlapping returns, so
it quite common to use

A —1

V_Ezz 3—7 ﬁt+kﬁlt+k 2:zz (21)
t=1

for these models.” For the two-, three-, and four-year regressions, the
disturbance vector 7,,, is serially correlated. Thus, it is not imme-
diately obvious how to go about constructing a consistent estimate
of V. One possibility, which is discussed in more detail below, is to
use a weighting scheme that yields a consistent, positive semidefinite
estimator. An alternative approach, which is adopted by Fama and
French (1989), is to rely on a truncated estimator. The subsequent
analysis makes use of both approaches.

To implement the Fama and French (1989) approach we assume
that the nonoverlapping errors for the regression are serially uncorre-
lated. Under these circumstances, the V matrix of Theorem 1.1 takes
the form:

k—1
V=31 Y Bl )| 522 (22)
j=—k+1

As a consequence, we can follow Hansen (1982) and compute a con-
sistent estimate of V from the sample autocovariances of 7,,, and the
sample covariance matrix of the instruments. The main drawback of
using this truncated estimator is that it is not guaranteed to be positive
semidefinite.

A heteroscedasticity and autocorrelation consistent estimator of V
that is guaranteed to be positive semidefinite can be obtained by
employing an appropriate weighting scheme. The estimator used in
empirical analysis is constructed using the quadratic spectral kernel
and automatic bandwidth selection procedure of Andrews (1991).8
First, the optimal bandwidth is estimated by fitting a first-order au-
toregressive model to each element of the sample disturbance vector
M:+%- This bandwidth controls the rate at which the weights decline

7 This estimator for V is identical to the heteroscedasticity-consistent covariance matrix estimator
of White (1980).

8 Andrews (1991) shows that quadratic spectral weights are optimal; that is, they minimize the
asymptotic truncated mean-squared error of the estimator.
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as the lag length increases. Then V is computed as

N ~-11
V=21|:

A Al
Ne+kMi+k

M-~

zz?

Il
-

t

~

Il
-

-1 T
1 A o - 1
+ wj [7 z (77!+k77lt+le—j + "7t+k—j77,t+le):|:| Yoz (23)
J t=j+1

where w) is the weight at lag j given by the quadratic spectral kernel.

2.5 Standard errors for the sample R?

Theorem 1.4 provides a way to compute consistent standard errors
for the sample R?. Recall that, under the alternative hypothesis where
returns are to some extent predictable over time, the variance of the
sample R? is a function of the autocovariance structure of Erp. In
particular, it is given by

oi= Y E [-S“’ki:’“‘i] . (24)

J=—00 al@

Since the variable &, will in general be serially correlated, the stan-
dard errors for the sample R? are computed by applying the automatic
bandwidth selection procedure and quadratic spectral kernel of An-
drews (1991) to the sample analog of Ervi

. Empirical Results

The empirical section of this article attempts to answer two basic
questions. First, are the findings of Fama and French (1989) robust to
minor changes in the data used to construct the instrumental variables?
Second, and more importantly, can their interpretation of the long-
horizon results be justified given the distributional properties of the
test statistics and sample R?? The analysis begins with an overview of
the evidence from the long-horizon regressions.

3.1 An initial look at the regression evidence

Tables 2 and 3 report the results of GMM estimation of the multiple
regression models. The estimates in Table 2 are for the dividend yield
and term spread. Those in Table 3 are for the default spread and term
spread. Panel A of each table contains the estimated slopes and their
associated t-ratios. As mentioned earlier, these estimates are identical
to the ones that would have been obtained by using OLS to fit the
" models to the data. Panel B of each table presents Wald tests of the
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null hypothesis that the slopes for the model are equal to zero and
gives the sample R? for each regression. The t-ratios and Wald tests
are corrected for autocorrelation and conditional heteroscedasticity
using the truncated estimator of Section 2.4.°

Upon initial inspection, the results shown in Tables 2 and 3 would
seem to bolster claims that long-horizon stock and bond returns are
highly predictable. Almost all of the point estimates of slope coef-
ficients are positive, and many of them are more than two standard
errors away from zero. The dividend yield—a stock market variable—
seems to have the ability to forecast bond returns. The bond market
variables—a term spread and default spread—seem to have the ability
to forecast stock returns. Overall, the point estimates of slope coeffi-
cients appear to document a clear pattern of time-series variation in
expected returns that is common across the stock and bond markets.

The Wald tests and sample R? in panel B of Tables 2 and 3 also
suggest strong predictability at long horizons. Most of the test statistics
for the one-, two-, three-, and four-year returns appear to be highly
significant in light of their limiting distribution under the null hypothe-
sis that returns are unpredictable. Moreover, the pattern in the sample
R? documented by Fama and French (1989) is clearly evident. The
sample R? increases from less than 3% for monthly returns to well
over 25% for many of the four-year returns. In short, the regression
results appear to support the conclusion that predictability increases
with the length of the return horizon. But a more thorough examina-
tion of the regression evidence raises serious questions about whether
such a conclusion is actually justified.

3.2 The regression evidence revisited

The fact that the sample R? increases with the length of the return
horizon does not, in and of itself, signal that long-horizon returns are
more predictable than those at short horizons. Indeed, the distribu-
tional theory developed earlier suggests that we would expect to see
an increase in the sample R? at long horizons, even if the long-horizon
returns are unpredictable. This can easily be illustrated by consider-
ing the case where the assumptions of classical regression analysis
are satisfied. Under such circumstances, the limiting distribution of
the sample R? is

TR. S X2, (25)

where x2, denotes a chi-square distribution with m degrees of free-
dom. If, as in the case of monthly returns, there are two instruments

. 9 In the regressions where the returns are nonoverlapping, the lag truncation parameter is set equal
to zero to obtain White’s (1980) estimator of the variance-covariance matrix.
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and 732 observations, then the expected sample R? is 0.3%. When we
move to annual returns, however, the number of observations drops
to 61. As a consequence, the expected sample R? increases to 3.3%,
even though the population R? is equal to zero.

Most of the annual regressions, of course, yield a sample R? that is
considerably larger than 3.3%. However, the increase in the expected
value of the sample R? at long horizons is by no means the whole
story. We also have to consider the effect that reducing the number of
observations has on the standard deviation of the sample R?. Like the
expected value, the standard deviation rises from 0.3% for monthly
returns to 3.3% for annual returns. Moreover, the sample R? for an
annual regression would have to exceed 9.8% in order for us to reject
the null of no predictability at a 5% significance level. Only 9 of the
14 annual regressions yield a sample R? that exceeds this cutoff, and
we have yet to take the effects of conditional heteroscedasticity and
serial correlation into account.

To properly gauge the precision of the long-horizon estimates we
need standard errors for the sample R? that have been corrected for
autocorrelation and conditional heteroscedasticity. These are shown
in Table 4. Panel A looks at the dividend yield and term spread re-
gressions. The default and term spread regressions are covered by
panel B. Note that the standard errors for the monthly regressions are
relatively small, but those for the long-horizon regressions often ex-
ceed 10%. This is particularly true for the high-grade bond portfolios,
which are the same portfolios that produce the largest values of the
sample R?. It appears that, in general, as the sample R? increases, so
does its standard error.

Table 4 also reports lower confidence limits for 95% and 98% con-
fidence intervals on the population R?. These lower confidence limits.
provide a way to get a better feel for the impact of the observed in-
crease in the standard errors at long horizons. They are constructed
using the variance-stabilizing transformation of the limiting distribu-
tion of the sample multiple correlation coefficient that was discussed
in Section 1.4. A lower confidence limit of zero indicates that it is not
possible to reject the hypothesis that the multiple correlation coef-
ficient, and hence the population R?, for the regression is equal to
zero.

On balance, the lower confidence limits shown in Table 4 do not
provide a lot of support for the view that the ability to predict stock
and bond returns increases with the length of the return horizon. Take
the results for the value-weighted market portfolio as a case in point.
At the four-year horizon, the dividend yield and term spread regres-
sion yields a sample R? of 26.3%. Although this value may appear
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large in absolute magnitude, the lower limit for the 95% confidence
interval is only 6.5%. Thus, a sample R? of 26.3% does not neces-
sarily imply that four-year returns on the market portfolio are highly
predictable.

Of course, several of the lower confidence limits in Table 4 are
a good deal higher than 6.5%. The A-rated bond portfolio, for ex-
ample, yields a lower limit of 21% at the four-year horizon. But we
have to be careful not to place undue emphasis on the outcome of a
single regression. Searching through the table to find the regression
that yields the largest lower confidence limit is a form of data snoop-
ing. A number of studies, such as those by Foster, Smith, and Whaley
(1996) and Lo and MacKinlay (1995), show that even a modest degree
of data snooping can severely bias classical procedures for drawing
inferences. Basically it boils down to a question of whether the re-
gression evidence, when taken as a whole, supports the conclusion
that predictability increases at long horizons. The pattern of standard
errors in Table 4 suggests that the increase in the sample R* may to
a large extent be a small sample effect. If this is the case, however,
then there should also be a way to explain the apparent evidence of
strong predictability from the #-ratios and Wald tests.

3.3 Size and power considerations

There are a couple of plausible scenarios under which we could ob-
serve large ¢-ratios and Wald statistics for the long-horizon regressions
even though long-horizon returns are not highly predictable. The first
is where the long-horizon returns are unpredictable, but the #-ratios
and Wald tests exhibit poor size. The second is where long-horizon
returns are only slightly predictable, but the #-ratios and Wald tests
exhibit high power. Recent studies by Richardson and Smith (1991)
and Hodrick (1992) demonstrate that size is a definite concern in the
long-horizon setting. These studies also suggest that the size of the
tests can be improved by explicitly imposing the null when construct-
ing an estimate of the variance-covariance matrix of the OLS estimator
of the slope coefficients.

Tables 5 and 6 illustrate the effect that imposing the null has on
the t-ratios and Wald tests. The results in panel A are for the trun-
cated estimator. Those in panel B are for the quadratic spectral es-
timator of Andrews (1991). The procedure used to impose the null
when constructing an estimate of the variance-covariance matrix is
straightforward. Under the null, the slope coefficients in the regres-
sion model are equal to zero, so the disturbance vector 7, is given
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by Zf=1 "1+i(Z — p,). As a result, we can compute the truncated
estimator as

T

A A —1 1 A A

V = 2zz' l:? Znt+kn/t+k
t=1

k—1 T
1 n n n n A —1
+ [? Z ("7[+Ien/t+k—j + nt+le—j77,t+/e)jljl ¥, @O

t=j+1

and the quadratic spectral estimator as

11 &

A A — A Al

V= z:zz 7 Nie+kMNivk
t=1

+ Z wj I: Z ("7t+1e7lt+le—j + Mt 177,4./@)]] 2z 27

j=1 t=j+1

where 7, ;, denotes the sample analog of Y% | #,(z, — p,), and wj
denotes the weight at lag j given by the quadratic spectral kernel
using the bandwidth determined by fitting an AR(1) model to each
element of 7.

It is immediately apparent that the #-ratios in panel A of Tables 5
and 6 are markedly different from those shown in Tables 2 and 3.
In Table 2, for instance, the annual regressions for the Aaa, Aa, and
A bond portfolios produce #-ratios for the term spread of 5.19, 4.17,
and 3.85. The corresponding values in panel A of Table 5 are 2.70,
2.68, and 2.77. This difference is solely a function of whether or not
the null is imposed when constructing the variance-covariance matrix.
When the null is imposed, few of the long-horizon regressions yield
t-ratios that are greater than two in magnitude, and most of those
that do involve one-year returns. The Wald statistics that result from
imposing the null are also much smaller than those reported in the
previous tables. Most of Wald tests in panel A of Tables 5 and 6 do not
reject the null of no predictability at conventional significance levels.

One potential concern is that these findings have something to
do with the fact that the truncated estimator is not guaranteed to
be positive semidefinite. This is not the case, however. Panel B of
Tables 5 and 6 show that the #-ratios and Wald statistics for spectral
estimator are quite similar to those for the truncated estimator. Thus,
the fact that the truncated estimator is not guaranteed to be positive
semidefinite does not appear to play a meaningful role in the results.
The spectral estimator of the variance-covariance matrix does tend to
<yield substantially smaller ¢-ratios and test statistics for annual returns.
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This is not surprising given that the spectral estimator corrects for
serial correlation in 7),,,. As Table 1 shows, the annual returns seem
to exhibit a modest degree of autocorrelation. The spectral estimator
captures this autocorrelation, and the truncated estimator does not.

After reviewing the evidence from the tests that impose the null, it
is not obvious how to interpret the results of the long-horizon regres-
sions. We know that, under the null hypothesis, the tests that impose
the null and those that do not have exactly the same limiting distri-
bution. But this does not necessarily imply that the size of the tests is
the same in small samples. It could be that the conventional tests re-
ject the null too often when it is true. This would provide support for
using the #-ratios and Wald statistics that impose the null. At the same
time, however, we have to allow for the possibility that the tests that
impose the null have low power in the long-horizon setting. In this
case, the conventional #-ratios and Wald statistics might provide more
reliable results. A Monte Carlo experiment provides a convenient way
to shed additional light on such issues.

Monte Carlo Evidence

The results of the empirical analysis suggest that previous research
overstates the ability to predict long-horizon stock and bond returns.
It is important to recognize, however, that this inference is based on
asymptotic distribution theory. This could have a significant impact on
the findings because a number of studies have shown that for datasets
of the size used in this study, the small sample distribution of long-
horizon test statistics can exhibit significant departures from the the-
oretical limiting distribution [see, for example, Richardson and Stock
(1989), Kim, Nelson, and Startz (1991), Richardson and Smith (1991);
Goetzmann and Jorion (1993, 1995), and Nelson and Kim (1993)]. This
section reports the results of a series of Monte Carlo experiments that
are designed to assess whether the small sample behavior of the test
statistics and sample R? is cause for concern.

4.1 The data generating process

Choosing a data generating process for the simulations involves a
trade-off between two opposing considerations. First and foremost,
the process should be capable of closely reproducing the observed
characteristics of the actual returns. At the same time, it should not
be overly complex. The simulations in this section assume that re-
turns are generated by a linear factor model where the factor loading
is a linear function of the instruments. This process is motivated by
a couple of observations. First, it is consistent with an intertemporal
version of the APT of Ross (1976). With a constant price of risk and
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a factor loading that is linear in z, the intertemporal APT implies that
there should be a linear relation between expected returns and realiza-
tions of the instrumental variables. Second, the process can produce
strong predictability at long horizons that stems directly from persis-
tence in short-horizon expected returns. This is precisely the sort of
predictability that Fama and French (1989) contend exists in actual
returns.

The exact form of the process that is assumed to govern the evo-
lution of the returns and instrumental variables is

;t = m,+btﬁ+lﬂftt ¢>0
Zi = @Zir1+ Vi y>0-1<¢<1,i=12
m; = A.bt A>0
by = w+6121,-1+82 w, 81,8, >0
(28)
where

Ui, @, fivg, Tzl ~ did. N (0, T).

This specification captures the pertinent features of long-horizon re-
gressions in a parsimonious fashion. Returns are given by the sum of
a stationary component and a noise component, which is similar to
return process implied by the two-component models of stock prices
proposed by Summers (1986), Fama and French (1988b), and Porteba
and Summers (1988). It differs from such models, however, in one
notable respect. Returns generated under the null of no predictabil-
ity are homoscedastic. But under the alternative where returns are
predictable, they exhibit conditional heteroscedasticity. Moreover, for
¢ close to one, the process gives rise to autoregressive conditional
heteroscedasticity (ARCH) effects like those that have been widely
documented in empirical literature.

To see how Equation (28) gives rise to ARCH effects, note that
the conditional variance of returns is given by b? + y2. Setting ¢
close to one causes b? to be strongly autocorrelated, and the resulting
conditional variance process exhibits a high degree of persistence.
Note also that the conditional mean and the conditional variance will
in general be correlated with one another. The parameter @ controls
the degree of correlation. If the other parameters are held constant,
then the correlation between the conditional mean and conditional
variance increases as w gets larger. Thus, the process is similar in
some respects to an ARCH-in-mean specification.

4.2 Parameter settings

_To conduct the simulations it is necessary to select settings for each of
the parameters in Equation (28). The settings used to generate the data
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for the case where returns are unpredictable are as follows: ¥ = 10,
A=05 0=10,8 =0, 8, =0,and y = /1 — ¢%. These values are
consistent with a scenario where the expected excess return on the
asset is 5% and the return standard deviation is 14.14%. The impact
of serial correlation on the analysis is gauged by using four different
settings of the parameter ¢. These settings are 0.0, 0.3, 0.6, and 0.9.
The parameter y is set equal to /1 — ¢? so that the instrumental
variables always have unit variance.

Returns generated using the aforementioned parameter settings are
i.i.d. normal random variables that are distributed independently of
the instrumental variables. The length of the return series used in the
simulations is the same as that for the actual long-horizon regressions.
It ranges from a high of 61 for the one-period returns to a low of 58 for
the four-period returns. The one-period returns are nonoverlapping.
Those for two-, three-, and four-periods are overlapping one-period
observations. The basic idea behind the simulations is to estimate a
linear regression model of the form

k
Z Tryi = o + Prezir + PorZor + Ervie (29)
im1

a total of 10,000 times for each of the 16 possible combinations of
return horizon and parameter settings. The results of the simulation
are then used to infer how the test statistics and sample R? will perform
in long-horizon regressions where the returns are unpredictable.

The procedure used to generate data for the situation where returns
exhibit predictability is more complicated than for the case where
they are unpredictable. The strategy is to choose a desired level of
predictability, and then find a combination of parameter settings that
will deliver it. For the simulations, this is accomplished as follows: (i)
set the population R? to 5%; (ii) set the parameters ¥, , and y to 10,
10, and /1 — ¢2, respectively; (iii) set §; equal to either 5 or 10; (iv)
set 8, = 0; (V) set ¢ equal to 0.3, 0.6, or 0.9; (vi) solve for the value
of A that delivers a population R? of 5%. After generating the data,
estimation of the regression model proceeds along the same lines as
before.

To solve for the correct value of A we need a way to compute the
population R?. With 8, set equal to zero, the general formula for the
population R? for a k-period regression is

e (30)

b~ -
( cov(} g Frris 21)* )

P -
var(} i, Fryi)var(Zy,)
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This equation can be expressed as

_ ok 2 koo o\
pi=p¥(l ¢) <Var(2"=1 r’*”) , 31)

1-¢ var(7y41)

where p{ is the value of the population R? for the one-period regres-
sion. Thus, the population R? for the k-period regression depends
on the population R? for the one-period model, the autocorrelation
coefficient of the first instrument, and the k-period variance ratio. For
the data generating process in Equation (28), Equation (31) simplifies

to
(£5) (oo eymmaen)
1-¢ ) \W2+oH)(A -9 +y23{(1+1?)

22822 k=1 W
k2 ((llf2 + @)1 - ¢?) +y28{(1 + AZ)) ;(k e
(32)
Equation (32) can be solved to find the value of A that yields the de-
sired level of predictability.!? The various combinations of parameter
settings outlined in steps (i) through (v) yield values of A that range
from a low of 0.232 to a high of 1.03.

4.3 The evidence on size

Table 7 examines the distributional properties of the #-ratios and sam-
ple R? for the situation where the population R? is equal to zero.
Recall that this implies that the simulated returns are conditionally
homoscedastic and distributed independently of the instruments. The
table reports the mean, standard deviation, and percentage points
for three different statistics: the f-ratio computed using the conven-
tional truncated estimator of the variance-covariance matrix, the ¢-ratio
based on the truncated estimator that imposes the null, and the sam-
ple R? for the regression model. The null hypothesis for the #-ratios
is that the slope coefficient for the first instrumental variable is equal
to zero.

The results shown in the initial four lines of the table are for re-
gressions that use one-period returns. Because the one-period returns
are nonoverlapping and conditionally homoscedastic, the traditional
assumptions of linear regression analysis are satisfied. As a conse-
quence, we might expect that the empirical distributions of the ¢-ratios
and sample R? would be well approximated by their theoretical lim-

10 See the Appendix for the details of how this equation is derived.
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iting distributions. For the sample R? and the t-ratio that imposes the
null hypothesis, this is in fact the case.!! The conventional #-ratio,
however, tends to reject the null too often in these regressions.

In light of the fact that the ¢-ratio that imposes the null performs well
in the simulations, it is not at all surprising to find that the conventional
t-ratio is biased toward rejecting the null. The sample variance of the
regression residuals is always less than or equal to the sample variance
of the returns. It follows, therefore, that the standard errors that are
obtained by imposing the null will, on average, be larger than the
standard errors that are computed in the conventional manner. This
in turn implies that the conventional #-ratio will generally be larger
than the #-ratio that is computed by imposing the null.

The bias in the case of one-period returns does not appear to be all
that severe. It gets progressively worse, though, as we move to returns
measured over longer horizons. In simulations where the autocorrela-
tion coefficient for the instruments is set equal to 0.9, the regressions
for four-period returns yield a 97.5% cutoff for the conventional -
ratio of 3.14. This is much larger that the nominal cutoff of 1.96. It
seems that in regressions where the instruments are highly persistent,
the standard errors used to construct the conventional #-ratio tend to
underestimate the actual variation in the OLS estimator of the slope
coefficients. Consequently the conventional #-ratio may be large even
if returns are unpredictable.

The t-ratio that imposes the null, on the other hand, does not suffer
from this problem. It performs reasonably well regardless of the return
horizon. Thus, imposing the null does seem to improve the size of
the tests in the long-horizon setting. The most interesting feature of
Table 7, however, is the shift in the distribution of the sample R? as we
move to longer return horizons. Notice how the mean of the sample
R? behaves as the return horizon gets longer. There is little change if
the instruments are serially uncorrelated, but the mean increases in a
monotonic fashion if the instruments are autocorrelated. With ¢ = 0.9,
the mean of the sample R? for the four-period regressions is 10.9%.
This is over three times as large as the corresponding value for the
one-period regressions.

There is also a substantial increase in the standard deviation of the
sample R? as the return horizon gets longer. As a result, the probability
of observing large values of the sample R? is much greater in the
multiperiod regressions than in the one-period regressions. With ¢
set equal to 0.9, the 95% cutoff for the sample R* is 9.9% for the

' According to Theorem 1.2, the sample R? should have a mean of 2/61 = 3.3%, a standard deviation
" of 2/61 = 3.3%, and 95% of the values should fall below 5.99/61 = 9.8%.
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one-period regressions. The corresponding value for the four-period
regressions is 29.6%. This shows that it is quite possible for a long-
horizon regression to yield large values of the sample R? even though
the returns are in reality unpredictable.

4.4 The evidence on power

Although the simulations of Section 4.3 confirm that large values of
the conventional -ratio and sample R? are not necessarily an indi-
cation that long-horizon returns are highly predictable, it does not
appear that they can explain all of the results in Tables 2 and 3. The
simulations indicate that the conventional #-ratio has reasonable size
in long-horizon regressions that use nonoverlapping data. This means
that poor size is not a likely explanation for the large -ratios reported
for the annual regressions in Tables 2 and 3. Nevertheless, large -
ratios for the one-year returns do not necessarily indicate that they are
highly predictable. If the conventional ¢-ratio has high power, then it
is conceivable that a small amount of predictability might generate
the observed results.

Evidence on the power of the #-ratios is presented in Tables 8 and
9. Table 8 examines the distributional properties of both the conven-
tional #-ratio and the ¢-ratio that imposes the null for the situation
where returns are slightly predictable. More specifically, this table re-
ports the mean, standard deviation, and percentage points for the
t-ratios in long-horizon regressions that have a population R? of 5%.
The results in panel A are for one-period returns. Those in panel B are
for four-period returns. Each panel presents results for two different
settings of ;. This is done because different settings for this parameter
generate different degrees of conditional heteroscedasticity.

The results in Table 8 reveal that the conventional ¢-ratio does have
a power advantage in long-horizon regressions. With §; = 5, for in-
stance, panel A indicates that the mean of the conventional #-ratio
ranges from a low of 1.45 to a high of 1.76. The corresponding values
for the #-ratio that imposes the null are 1.29 and 1.53. Similar results
are obtained when 8; = 10. The mean of the conventional ?-ratio
varies from 1.39 to 1.58. For the f-ratio that imposes the null it varies
from 1.23 to 1.36. These results suggest that the distributional prop-
erties of the #-ratios are not overly sensitive to the degree-conditional
heteroscedasticity displayed by returns.

The power advantage of the conventional ¢-ratio is more pro-
nounced in the four-period regressions. With §; = 5, the mean ranges
from 1.02 to 1.76 for the conventional ¢-ratio, and from 0.63 to 1.20
for the t-ratio that imposes the null. Because the conventional #-ratio
demonstrates good power in the long-horizon setting, it is possible
for a regression with a small population R? to produce what might be
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interpreted as evidence that returns are highly predictable. The 97.5%
cutoff for the conventional #-ratio is typically above 4.00, and the 99%
cutoff can exceed 6.00. These values are in the same range as those
reported in Tables 2 and 3 for the annual regressions.

Now consider the distributional properties of the sample R?. Table 9
reports the mean, standard deviation, and percentage points for both
the sample R? and the t-ratio associated with the sample multiple
correlation coefficient. This f-ratio is computed using the variance-
stabilizing transformation discussed in Section 1.4. The results in panel
A are for one-period returns; those in panel B are for four-period
returns. The first aspect to note about these results is that the sample
R? is biased upward. In panel A the mean of the sample R? ranges
from 7.0% to 8.8%, and in panel B it ranges from 9.3% to 14.4%. The
increase in the bias for the regressions that use overlapping returns
is consistent with the implications of the distributional theory for the
sample R2.

Not surprisingly, the upward bias in the sample R? is reflected in the
distribution of the ¢-ratio for the multiple correlation coefficient. The
mean of this distribution is always greater than zero, and its variance
is always greater than one. It appears from these results that the #-ratio
for the multiple correlation coefficient does not possess good size in
situations where the population R? is close to zero. This finding is
reasonably intuitive. The sample R? can never be less than zero. It
follows, therefore, that when the population R? is close to zero, the
asymptotic normal approximation is not likely to perform well in small
samples.

There is also a substantial degree of variation in the value of the
sample R? for the regressions. It is not uncommon to see a large sam-
ple R? even though the population R? is only 5%. In the one-period
regressions, the 95% cutoff for the sample R? hovers around 20%. For
the four-period regressions, however, it goes as high as 38.8%. This
means that under certain circumstances we would expect to observe
a sample R? that is greater than 38.8% in 5 out of 100 regressions,
despite the fact that the population R? is only 5%. Thus, the simu-
lations indicate that in many cases it not possible to conclude from
large values of the sample R? that long-horizon returns are highly pre-
dictable. The long-horizon estimates are simply too imprecise to be
able to draw firm inferences.

4.5 Implications

The Monte Carlo experiments clearly illustrate the effects that small
sample sizes and autocorrelated errors can have on the distributional
properties of the t-ratios and sample R?. The conventional ¢-ratio dis-
plays poor size under the null, but good power under the alternative.
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It is not uncommon, therefore, to observe large realizations of this
t-ratio in regressions where the population R? is either small or zero.
The t-ratio that imposes the null, on the other hand, displays good
size under the null, but is not as powerful as the conventional -ratio
under the alternative. This disparity in power may explain in large part
why the conventional ¢-ratio rejects the null so often when the #-ratio
that imposes the null does not. Evidence against the null, however, is
not synonymous with strong predictability at long-horizon horizons.

The most telling evidence from the Monte Carlo experiments con-
cern the distributional properties of the sample R?. The simulations
reveal that long-horizon regressions can easily yield large values of the
sample R? under circumstances where returns do not display a high
degree of predictability. This is consistent with the theoretical anal-
ysis, which implies that we would expect the sample R? to increase
as the horizon gets longer, and the empirical results, which indicate
that the standard error of the sample R? increases dramatically at long
horizons. On balance, the results are consistent with the view that the
increase in the sample R? at long horizons is driven more by statistical
considerations than by economic forces.

These results should carry over to studies that rely on other method-
ologies as well. Campbell and Shiller (1988), for example, use a vector
autoregressive (VAR) approach to examine the relation between div-
idend growth rates, dividend vyields, and earnings:price ratios. First
they apply a log transformation to annual data on the dividend yield
and earnings:price ratio. Then they estimate VAR specifications using
observations for the 1901-1987 time period. The dividend yields and
dividend growth rates used to estimate the models are nonoverlap-
ping, but the earnings:price ratios are computed based on a 30-year
moving average of earnings.

The VAR results of Campbell and Shiller (1988) seem to indicaté
that the log dividend yield and log earnings:price ratio have strong
forecasting power for dividend growth. The #-ratios for these two
variables are —6.23 and 4.54, respectively, and the sample R? for the
model is 36.1%. But there may be good reason to regard these results
as somewhat suspect. The VAR estimates of the first-order autoregres-
sive coefficients for the dividend growth rate, log dividend yield, and
log earnings:price ratio are 0.33, 0.61, and 0.87, respectively. If these
estimates accurately reflect the degree of autocorrelation in the data,
then the mechanism documented in the simulations is most likely at
work in these VAR models.

The analysis also has implications for studies besides those that fo-
cus strictly on the ability to predict returns. Fama (1990), for example,
uses a regression approach to examine the relation between stock

.returns and future production growth rates. He finds that future pro-
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duction growth rates explain 6% of the variation in monthly returns
on the NYSE value-weighted index. But the proportion rises to 43%
for annual returns. Fama (1990) argues, therefore, that real activity
explains a larger fraction of return variation at long horizons. Again,
however, this inference may not be warranted. His regression model
has 137 annual observations, uses overlapping returns observed at
quarterly intervals, and employs eight explanatory variables, each of
which has an estimated first-order autocorrelation coefficient of 0.33.
Thus, the sample R? for the regression almost certainly has a large
standard error.

5. Conclusions

Recent studies by Campbell and Shiller (1988) and Fama and French
(1989) contend that long-horizon stock and bond returns are highly
predictable. The primary basis for this claim seems to be that the
sample R? from predictive regressions increases with the length of
the return horizon. Fama and French (1989), for instance, find that
the sample R? increases from around 3% for monthly returns to well
over 25% for four-year returns. They attribute this increase in the sam-
ple R? to strong predictability at long horizons that can be traced to
persistence is short-horizon expected returns. As a result, they argue
that the predictability of long-horizon returns arises as a natural con-
sequence of changing business conditions.

This article offers a different view of the long-horizon evidence.
Long-horizon studies typically measure predictability using regres-
sion models that, more often than not, employ overlapping returns.
The overlapping returns produce serially correlated errors that, along
with small sample sizes, make it difficult to draw precise inferences.
Long-horizon regressions can yield large values of the sample R? in -
situations where the population R? is small or zero. Moreover, long-
horizon regressions with a small or zero population R?> can produce
t-ratios that might be interpreted as evidence of strong predictability.
Consequently the conclusion that long-horizon returns are highly pre-
dictable does not appear to be justified. The results suggest that the in-
crease in the sample R? at long horizons has more to do with statistical
properties of this estimator than with changing business conditions.

Appendix

The proofs of Theorems 1.1-1.4 assume a working knowledge of
the asymptotic theory associated with the generalized method of mo-
ments. See Hansen (1982) for an detailed discussion of the GMM
- procedure.
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Proof of Theorem 1.1. Start with the following disturbance vector:

k.~ ~/
h(%:, 0) = ( Z;ei=1 Viyi — Qp — Zzﬂk ) (1A)

(E¢=1 Tryi— Qp — thﬂk)zt

where ¥, = [Zf;l 7ivi, 2,0 and @ = [ay, B)). Because the system in
Equation (1A) is exactly identified, it is readily apparent that the GMM
estimator is obtained by replacing each element of the vector 8 with
its sample analog. The sample analog of the vector 3, is the least-
squares estimator . Thus, the asymptotic results given by Hansen
(1982),

JT@® —8) % N, (DS D)), (2A)
where
3%, 0 o0 3 3 ,
D—E [%] and S =/=Z_:oo Elh(z,, O)h(%,_;, 0)1 (3A)

can be used to derive the limiting distribution of 3.

An analytic version of D can easily be obtained by taking the ex-
pected value of the Jacobian of k(¥;, 8) with respect to . The resulting
expression is

I e
D= [ p, —EEZ) ] ' (“44)
Applying standard results on the inverse of a partitioned matrix yields
B _ 1+“/2—1“ ) ”/2—1 ]
D! = ( Pz 2z 2 272z | 5A
[ Ezzly‘z _zzz1 GA)

where X, = El(Z; — p,)(Z; — p,)'] denotes the variance-covariance
matrix of the instrumental variables. Using this result, the lower-right
m x m submatrix of D~!SD~Y can be written as

o0 _ !’ ~ ~ ~ ~ ~t
V = E : E N/Zzzzl Et+kEtyb—j Et+kEt+k—jZsj
-X; Er+kEi+k—jCt  Er+kErth—jTiZy

J=—00
/ -1
[ Mz ]) : 6A)

where £,y = Zf=1 71+i—@r—Z,0. Therefore, the limiting distribution
of the least-squares estimator is

VTB, — By) > N, V), (7A)
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with V given by

V=3, LZ E[Erifrin—j @ — 1) Grmy — uz)’]] . (8M)

i——00

Proofof Theorem 1.2. Let 1), denote the disturbance vector &, 4(z; —
K;). Now suppose that 7)., is serially uncorrelated and 8, is equal
to zero. The matrix V can be written as

& 2
V=27, |04z +cov (Z ‘mi—uk) L@ - )G — ) | 351
i=1
%A)
If returns are conditionally homoscedastic, then the covariance term
in Equation (9A) disappears and the limiting distribution of the least-
squares estimator becomes

VT3, 5 N©, 02570, (10A)
Therefore, the Wald statistic,
Al A
. by
Wp=T (ﬂ’e_zjﬂk) , (11A)
Ok

converges to a chi-square random variable with m degrees of freedom.
The right-hand side of Equation (11A) is equal to 7R:.

Proof of Theorem 1.3. Suppose the vector of slope coefficients 3, is
equal to zero. Under these circumstances, the limiting distribution of
the least-squares estimator is

VTB, 2 N, V), (12A)

with V given by Equation (8A). Premultiply the distribution shown in
(12A) by the 2m x m vector [I, X..6, %Y to obtain

— 3 0 v VE..6,
7‘(Aﬁf )_d)SN([ ]’[ 6y, zz,e ])’
62,0, 2 0 ..V, 2 EszZzzak
(13A)

where SN(-) denotes a singular normal distribution. It is apparent that
TR: can be written as:

T B "0 I B
RZ__ k k A
T 2(&2,&,;2 ) ( I 0)(azrak2 ) (144)
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Thus, by Slutsky’s theorem, the limiting distribution of 7R} is that of
a quadratic form in a singular normal random vector. Searle (1971)
gives formulas for the first two central moments of such quadratic
forms. In particular, he shows that if

yl ~ 0 C]] C12
G)-(l[e &) o

the expected value and variance of the quadratic form
Li»n (0 4 ) Y1 )
-2 16A
=3 ( ¥, ) ( Ao )\y, (16A)

wg = tr(ACz) and o2 = tr(ACy)?* + tr(ACACy;). (17A)
q q

are given by

Applying these formulas to the distribution shown in Equation (13A)
yields the desired results.

Proof of Theorem 1.4. Under the alternative hypothesis the population
R? lies between zero and one. It can therefore be estimated in standard
fashion using the econometric specification

Zf;l Fryi— 0 — zlzﬂk
iy P — e — 2,807
Ef;l Tryi — Mk

(1- pi)(Zle Froi — M) — (Zf=1 Frri — 0k — Z,0,)2
(18A)

where ¥, = (Y%, #1ys, Z) and @ = [up, ar, B), p2l. The system

in Equation (18A) is exactly identified, so the GMM estimator is again

obtained by replacing each element of the vector § with its sample

analog. Taking the expected value of the Jacobian of k(x,, 8) with

respect to 8 yields a block diagonal matrix. The first block is given by

Equation (4A), and the second is simply diag{—1, —a,?}.‘ Because the

D matrix takes this form, only the lower right-most element of § will

have an impact on the distribution of R?. This element of S is given

by

h(x;, 0) =

Sp2 = Z E[§t+legt+k—j], (19A)

j=—00

where &4 = ((1—/012@)(Zf=1 Frei—mwp)?—E2 ) and &4y = (Zf:l Trypi—
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ag — Z,8;). Thus the limiting distribution of R? is

VTR — p2) 3 N, 02), (20A)

with o} given by

2 i |:§:+k€:+k—j] . (214)
j=—00 Uk

The Monte Carlo experiment

This section outlines the derivation of the population value of R?* for

a k-period return horizon. The data generating process for excess

returns takes the form of a conditional linear factor model:

o= mAbfityi ¥ >0
Zi = @Zip1+yna y>0 —-1l<g¢p<1,i=12
m = Ab A>0
by = o+6821,1+8:2,1 w, 81,8, >0
(22A)
where
Ufis @, e, T2 ~ did. N(O, T).
First, set §, = 0 and note the following results:
Zu =y Z;‘ZO ¢iﬁ1,t—i
2, ~ N(0,y*/(1—¢%) (23A)
cov(XF Fipn B1) = Adivar(Gy) TF o

Next, consider the general expression for the population value of R?
for a k-period return horizon:

o= ( COV(Z?:I Frvis 210)* ) ' (24A)

"~ ~
var(}_; Frpr)var(Z,)

The quantity Ele ¢~ !isequalto (1— $*)/(1 —¢), so Equation (24A)
can be written as

_ ok oy o\
,02 p? (1 ¢) (Var(szl rt+l)) , (25A)

1-¢ var(#41)
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where

Plz = (M) (26A)

var(7;41)
denotes the population value of R? for the one-period return horizon.
But var(741) is given by
var(fiy1) = ElA&121 + (@ + 8151 i1 + Vitg)?]
= Y+ o +82(1 + A*)var(Z,)
(@01 — D) +y22(1 42D
= =4 ,

(27A)

so Equation (26A) becomes

12522
p? = ( 1Y ) . (28A)
PN+ ) - ¢7) + y28i(1+42)

Now consider the k-period variance ratio. The general formula given
by Lo and MacKinlay (1988) and Richardson and Smith (1991) is

ko~ k—1
YAz 716D _ gy 2 Y k- iy com(n Fen s (29)
var(74+1) =1

where corr(-) denotes the correlation operator. To find the autocorre-
lation coefficient at lag j note that 7, ; can be written as

-~ i~ j . i~
Frej = Ao+ 810 + fir) <¢le,,_1 +y Z¢f—'n1.,+,-_1)

i=1
Thus the covariance between 7, and 7,4, is given by
cov(#, ) = A28/ var(Z1,,-1). (31A)

Equations (27A) and (31A) can be combined to yield the formula for
the autocorrelation coefficient at lag j:

A28%y2ep/ )
Y2+ 0?)(1 — ¢2) + y282(1+12) )

Corr(7“,, ;l+j) = ( (32A)
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Therefore, Equation (24A) becomes:

(1 —¢’e)2( 22822 )
1-¢ ) \(@2+ o)1 —¢) +y?8i(1+12)

)\.2812}/2 k—1 .
o <(‘”2 +w?)(1— ¢?) + ¥ + AZ)) ;(k —0¢
(33A)
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