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When Are Contrarian Profits
Due to Stock Market
Overreaction?

Andrew W. Lo
Sloan School of Management
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If returns on some stocks systematically lead or
lag those of others, a portfolio strategy that sells
‘“‘winners” and buys “losers” can produce positive
expected returns, even if no stock’s returns are
negatively autocorrelated as virtually all models
of overreaction imply. Using a particular con-
trarian strategy we show that, despite negative
autocorrelation in individual stock returns, weekly
porifolio returns are strongly positively autocor-
related and are the result of important cross-auto-
correlations. We find that the returns of large
stocks lead those of smaller stocks, and we present
evidence against overreaction as the only source
of contrarian profits.

Since the publication of Louis Bachelier’s thesis The-
ory of Speculation in 1900, the theoretical and empir-
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ical implications of the random walk hypothesis as a model for spec-
ulative prices have been subjects of considerable interest to financial
economists. First developed by Bachelier from rudimentary economic
considerations of “fair games,” the random walk has received broader
support from the many early empirical studies confirming the unpre-
dictability of stock-price changes.! Of course, as Leroy (1973) and
Lucas (1978) have shown, the unforecastability of asset returns is
neither a necessary nor a sufficient condition of economic equilib-
rium. And, in view of the empirical evidence in Lo and MacKinlay
(1988), it is also apparent that historical stock market prices do not
follow random walks.

This fact surprises many economists because the defining property
of the random walk is the uncorrelatedness of its increments, and
deviations from this hypothesis necessarily imply price changes that
are forecastable to some degree. But our surprise must be tempered
by the observation that forecasts of stock returns are still imperfect
and may be subject to considerable forecast errors, so that “‘excess”
profit opportunities and market inefficiencies are not necessarily con-
sequences of forecastability. Nevertheless, several recent studies
maintain the possibility of significant profits and market inefficiencies,
even after controlling for risk in one way or another.

Some of these studies have attributed this forecastability to what
has come to be known as the “stock market overreaction” hypothesis,
the notion that investors are subject to waves of optimism and pes-
simism and therefore create a kind of “momentum” that causes prices
to temporarily swing away from their fundamental values [see, e.g.,
DeBondt and Thaler (1985, 1987), DeLong, Shleifer, Summers, and
Waldmann (1989), Lehmann (1988), Poterba and Summers (1988),
and Shefrin and Statman (1985)]. Although such a hypothesis does
imply predictability, since what goes down must come up and vice
versa, a well-articulated equilibrium theory of overreaction with sharp
empirical implications has yet to be developed. :

But common to virtually all existing theories of overreaction is one
very specific empirical implication: Price changes must be negatively
autocorrelated for some holding period. For example, DeBondt and
Thaler (1985) write: “If stock prices systematically overshoot, then
their reversal should be predictable from past return data alone.”
Therefore, the extent to which the data are consistent with stock
market overreaction, broadly defined, may be distilled into an empir-

See, for example, the papers in Cootner (1964), and Fama (1965, 1970). Our usage of the term
“random walk” differs slightly from the classical definition of a process with independently and
identically distributed increments. Since historically the property of primary economic interest has
been the uncorrelatedness of increments, we also consider processes with uncorrelated but het-
erogeneously distributed dependent increments to be random walks.
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ically decidable question: Are return reversals responsible for the
predictability in stock returns?

A more specific consequence of overreaction is the profitability of
a contrarian portfolio strategy, a strategy that exploits negative serial
dependence in asset returns in particular. The defining characteristic
of a contrarian strategy is the purchase of securities that have per-
formed poorly in the past and the sale of securities that have per-
formed well.? Selling the “winners” and buying the “losers” will earn
positive expected profits in the presence of negative serial correlation
because current losers are likely to become future winners and current
winners are likely to become future losers. Therefore, one implication
of stock market overreaction is positive expected profits from a con-
trarian investment rule. It is the apparent profitability of several con-
trarian strategies that has led many to conclude that stock markets do
indeed overreact.

In this article, we question this reverse implication, namely, that
the profitability of contrarian investment strategies necessarily implies
stock market overreaction. As an illustrative example, we construct a
simple return-generating process in which each security’s return is
serially independent and yet will still yield positive expected profits
for a portfolio strategy that buys losers and sells winners.

This counterintuitive result is a consequence of positive cross-auto-
covariances across securities, from which contrarian portfolio strat-
egies benefit. If, for example, a high return for security A today implies
that security B’s return will probably be high tomorrow, then a con-
trarian investment strategy will be profitable even if each security’s
returns are unforecastable using past returns of that security alone.
To see how, suppose the market consists of only the two stocks, A
and B; if A’s return is higher than the market today, a contrarian sells
it and buys B. But if A and B are positively cross-autocorrelated, a
higher return for A today implies a higher return for B tomorrow on
average, thus the contrarian will have profited from his long position
in B on average. Nowhere is it required that the stock market over-
reacts, that is, that individual returns are negatively autocorrelated.
Therefore, the fact that some contrarian strategies have positive
expected profits need not imply stock market overreaction. In fact,
for the particular contrarian strategy we examine, over half of the
expected profits are due to cross effects and not to negative autocor-
relation in individual security returns.

Perhaps the most striking aspect of our empirical findings is that
these cross effects are generally positive in sign and have a pro-

2 Decisions about how performance is defined and for what length of time generate as many different
kinds of contrarian strategies as there are theories of overreaction.

177



The Review of Financial Studies /v 3 n 2 1990

nounced lead-lag structure: The returns of large-capitalization stocks
almost always lead those of smaller stocks. This result, coupled with
the observation that individual security returns are generally weakly
negatively autocorrelated, indicates that the recently documented
positive autocorrelation in weekly returns indexes is completely
attributable to cross effects. This provides important guidance for
theoretical models of equilibrium asset prices attempting to explain
positive index autocorrelation via time-varying conditional expected
returns. Such theories must be capable of generating lead-lag pat-
terns, since it is the cross-autocorrelations that are the source of
positive dependence in stock returns.

Of course, positive index autocorrelation and lead-lag effects are
also a symptom of the so-called “nonsynchronous trading” or “thin
trading” problem, in which the prices of distinct securities are mis-
takenly assumed to be sampled simultaneously. Perhaps the first to
show that nonsynchronous sampling of prices induces autocorrelated
portfolio returns was Fisher (1966); hence the nonsynchronous trad-
ing problem is also known as the “Fisher effect.””® Lead-lag effects
are also a natural consequence of thin trading, as the models of Cohen
et al. (1986) and Lo and MacKinlay (1989) show. To resolve this
issue, we examine the magnitudes of index autocorrelation and cross-
autocorrelations generated by a simple but general model of thin
trading. We find that, although some of the correlation observed in
the data may be due to this problem, to attribute all of it to thin
trading would require unrealistically thin markets.

Because we focus only on the expected profits of the contrarian
investment rule and not on its risk, our results have implications for
stock market efficiency only insofar as they provide restrictions on
economic models that might be consistent with the empirical results.
In particular, we do not assert or deny the existence of “excessive”
contrarian profits. Such an issue cannot be addressed without spec-
ifying an economic paradigm within which asset prices are rationally
determined in equilibrium. Nevertheless, we show that the contrarian
investment strategy is still a convenient tool for exploring the auto-
correlation properties of stock returns.

In Section 1 we provide a summary of the autocorrelation properties
of weekly returns, documenting the positive autocorrelation in port-
folio returns and the negative autocorrelations of individual returns.
Section 2 presents a formal analysis of the expected profits from a
specific contrarian investment strategy under several different return-
generating mechanisms and shows that positive expected profits need

3 We refrain from this usage since the more common usage of the Fisher effect (that of Irving Fisher)
is the one-for-one change in nominal interest rates with changes in expected inflation.
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not be related to overreaction. We also develop our model of non-
synchronous trading and calculate the effect on the time-series prop-
erties of the observed data, to be used later in our empirical analysis.
In Section 3, we attempt to quantify empirically the proportion of
contrarian profits that can be attributed to overreaction, and find that
a substantial portion cannot be. We show that a systematic lead-lag
relationship among returns of size-sorted portfolios is an important
source of contrarian profits, and is the sole source of positive index
autocorrelation. Using the nontrading model of Section 2, we also
conclude that the lead-lag patterns cannot be completely attributed
to nonsynchronous prices. In Section 4 we provide some discussion
of our use of weekly returns in contrast to the much longer-horizon
returns used in previous studies of stock market overreaction, and we
conclude in Section 5.

A Summary of Recent Findings

In Table 1 we report the first four autocorrelations of weekly equal-
weighted and value-weighted returns indexes for the sample period
from July 6, 1962, to December 31, 1987, where the indexes are
constructed from the Center for Research in Security Prices (CRSP)
daily returns files.4 During this period, the equal-weighted index has
a first-order autocorrelation p, of approximately 30 percent. Since its
heteroskedasticity-consistent standard error is .046, this autocorre-
lation is statistically different from zero at all conventional signifi-
cance levels. The subperiod autocorrelations show that this signifi-
cance is not an artifact of any particularly influential subsample;
equal-weighted returns are strongly positively autocorrelated
throughout the sample. Higher-order autocorrelations are also pos-
itive although generally smaller in magnitude, and decay at a some-
what slower rate than the geometric rate of an autoregressive process
of order 1 [AR(1)] (for example, g2 is 8.8 percent whereas g, is 11.6
percent).

To develop a sense of the economic importance of the autocorre-
lations, observe that the R? of a regression of returns on a constant
and its first lag is the square of the slope coefficient, which is simply
the first-order autocorrelation. Therefore, an autocorrelation of 30
percent implies that 9 percent of weekly return variation is predictable
using only the preceding week’s returns. In fact, the autocorrelation
coefficients implicit in Lo and MacKinlay’s (1988) variance ratios are
as high as 49 percent for a subsample of the portfolio of stocks in the
smallest-size quintile, implying an R? of about 25 percent.

4 Unless stated otherwise, we take returns to be simple returns and not continuously compounded.
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Table 1
Sample statistics for the weekly equal-weighted and value-weighted CRSP NYSE-AMEX
stock-return indexes, for the period from July 6, 1962, to December 31, 1987, and sub-
periods

Mean Std. dev.
return, of return,

Sample % X % X I b2 ps Ps
Time period size 100 100 (SE) (SE) (SE) (SE)
Equal-weighted

620706-871231 1330 359 2.277 .296 116 .081 .045
(.046) (.037) (.034) (.035)
620706-750403 665 264 2.326 .338 157 .082 .044
(.053) (.048) (.052) (.053)
750404-871231 665 455 2.225 .248 .071 .078 .040

(.076) (.058) (.042) (.045)
Value-weighted

620706-871231 1330 .210 2.058 074 .007 .021 —.005
(.040) (.037) (.036) (.037)

620706-750403 665 135 1.972 .055 .020 .058 —.021
(.058) (.055) (.060) (.058)

750404-871231 665 .285 2.139 .091 —.003 —.014 .007

(.055) (.049) (.042) (.046)

Heteroskedasticity-consistent standard errors for autocorrelation coefficients are given in paren-
theses.

It may, therefore, come as some surprise that individual returns are
generally weakly negatively autocorrelated. Table 2 shows the cross-
sectional average of autocorrelation coefficients across all stocks that
have at least 52 nonmissing weekly returns during the sample period.
For the entire cross section of the 4786 such stocks, the average first-
order autocorrelation coefficient, denoted by g,, is —3.4 percent with
a cross-sectional standard deviation of 8.4 percent. Therefore, most
of the individual first-order autocorrelations fall between —20 percent
and 13 percent. This implies that most R?’s of regressions of individual
security returns on their return last week fall between 0 and 4 percent,
considerably less than the predictability of equal-weighted index
returns. Average higher-order autocorrelations are also negative,
though smaller in magnitude. The negativity of autocorrelations may
be an indication of stock market overreaction for individual stocks,
but it is also consistent with the existence of a bid-ask spread. We
discuss this further in Section 2.

Table 2 also shows average autocorrelations within size-sorted
quintiles.” The negative autocorrelations are stronger in the smallest
quintile, but even the largest quintile has a negative average auto-

* Securities are allocated to quintiles by sorting only once (using market values of equity at the end
of their sample periods); hence, the composition of quintiles does not change over time.
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Table 2
Averages of autocorrelation coefficients for weekly returns on individual securities, for
the period July 6, 1962, to December 31, 1987

Number of A P2 P Ps
Sample securities (SD) (SD) (SD) (SD)
All stocks 4786 —.034 —.015 —.003 —.003
(.084) (.065) (.062) (.061)
Smallest quintile 957 —.079 —.017 —-.007 —.004
(.095) .077) (.068) (.071)
Central quintile 958 —.027 —.015 —.003 —.000
(.082) (.068) (.067) (.065)
Largest quintile 957 —.013 —.014 —.002 —.005
(.054) (.050) (.050) (.047)

The statistic g, is the average of jth-order autocorrelation coefficients of returns on individual stocks
that have at least 52 nonmissing returns. The population standard deviation (SD) is given in
parentheses. Since the autocorrelation coefficients are not cross-sectionally independent, the re-
ported standard deviations cannot be used to draw the usual inferences; they are presented merely
as a measure of cross-sectional variation in the autocorrelation coefficients.

correlation. Compared to the 30 percent autocorrelation of the equal-
weighted index, the magnitudes of the individual autocorrelations
indicated by the means (and standard deviations) in Table 2 are
generally much smaller.

To conserve space, we omit corresponding tables for daily and
monthly returns, in which similar patterns are observed. Autocorre-
lations are strongly positive for index returns (35.5 and 14.8 percent
p.’s for the equal-weighted daily and monthly indexes, respectively),
and weakly negative for individual securities (—1.4 and —2.9 percent
p,’s for daily and monthly returns, respectively).

The importance of cross-autocorrelations is foreshadowed by the
general tendency for individual security returns to be negatively auto-
correlated and for portfolio returns, such as those of the equal- and
value-weighted market index, to be positively autocorrelated. To see
this, observe that the first-order autocovariance of an equal-weighted
index may be written as the sum of the first-order own-autocovariances
and cross-autocovariances of the component securities. If the own-
autocovariances are generally negative, and the index autocovariance
is positive, then the cross-autocovariances must be positive.
Moreover, the cross-autocovariances must be large, so large as to
exceed the sum of the negative own-autocovariances. Whereas vir-
tually all contrarian strategies have focused on exploiting the negative
own-autocorrelations of individual securities [see, e.g., DeBondt and
Thaler (1985, 1987) and Lehmann (1988)], primarily attributed to
overreaction, we show below that forecastability across securities is
at least as important a source of contrarian profits both in principle
and in fact.
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2. Analysis of Contrarian Profitability

To show the relationship between contrarian profits and the cross
effects that are apparent in the data, we examine the expected profits
of one such strategy under various return-generating processes. Con-
sider a collection of N securities and denote by R, the N x 1 vector
of their period ¢ returns [R,, - - - Ry,]'. For convenience, we maintain
the following assumption throughout this section:

Assumption 1. R, is a jointly covariance-stationary stochastic process
with expectation E[R,] = u = [u, p, - + - py/ and autocovariance
matrices E[(R,_, — u)(R, — n)’] =T, where, with no loss of generality,
we take k= 0 sincel, =T",.°

In the spirit of virtually all contrarian investment strategies, consider
buying stocks at time ¢ that were losers at time ¢ — k and selling
stocks at time ¢ that were winners at time ¢ — k, where winning and
losing is determined with respect to the equal-weighted return on
the market. More formally, if w, (&) denotes the fraction of the port-
folio devoted to security 7 at time ¢, let

wit(k) = _(1/N) (Rz't—k - Rmt—k) i= 1: LR ] N (1)

where R,,_, = Z¥, R,_,/N is the equal-weighted market index.” If,
for example, & = 1, then the portfolio strategy in period ¢ is to short
the winners and buy the losers of the previous period, ¢ — 1. By
construction, w, (k) = [w,,(k) w, (k) - - - wy(k)] is an arbitrage port-
folio since the weights sum to zero. Therefore, the total investment
long (or short) at time ¢ is given by (k) where

1 =23 16,0 @

Since the portfolio weights are proportional to the differences between
the market index and the returns, securities that deviate more posi-
tively from the market at time ¢ — kwill have greater negative weight

¢ Assumption 1 is made for notational simplicity, since joint covariance-stationarity allows us to
eliminate time indexes from population moments such as p and T',; the qualitative features of our
results will not change under the weaker assumptions of weakly dependent heterogeneously
distributed vectors R, This would merely require replacing expectations with corresponding prob-
ability limits of suitably defined time averages. The empirical results of Section 3 are based on
these weaker assumptions; interested readers may refer to Assumptions A1-A3 in Appendix B.

7 This is perhaps the simplest portfolio strategy that captures the essence of the contrarian principle.
Lehmann (1988) also considers this strategy, although he employs a more complicated strategy in
his empirical analysis in which the portfolio weights [Equation (1)] are renormalized each period
by a random factor of proportionality, so that the investment is always $1 long and short. This
portfolio strategy is also similar to that of DeBondt and Thaler (1985, 1987), although in contrast
to our use of weekly returns, they consider holding periods of three years. See Section 4 for further
discussion.
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in the time ¢ portfolio, and vice versa. Such a strategy is designed to
take advantage of stock market overreactions as characterized, for
example, by DeBondt and Thaler (1985): “(1) Extreme movements
in stock prices will be followed by extreme movements in the oppo-
site direction. (2) The more extreme the initial price movement, the
greater will be the subsequent adjustment.” The profit =,(k) from
such a strategy is simply

N
7 (k) = ) w,(R)R, 3)
i=1
Rearranging Equation (3) and taking expectations yields the follow-

ing:

Tt Loy -3 - @
N? N k N~ Ki ™ Hm

E[W,(k)] =

where u,, = E[R,,] = w't/Nand tr(-) denotes the trace operator.® The
first term of Equation (4) is simply the kth-order autocovariance of
the equal-weighted market index. The second term is the cross-sec-
tional average of the kth-order autocovariances of the individual secu-
rities, and the third term is the cross-sectional variance of the mean
returns. Since this last term is independent of the autocovariances T,
and does not vary with &, we define the profitability index L, = L(T,)
and the constant ¢%(u) as

Ty 1 , _1 < 2
L, = N Ntr(l‘,_,) o2(u) = I—VE (; — 1) (5)
Thus,
E[n (k)] =L, — 0*(n) (6)
For purposes that will become evident below, we rewrite L, as
L= C,+ O, 7
where
1 N—1
G =15 T —u@)] O, = —( v )tr(l“k) (8)
Hence,

Hr (k)] = G+ O, — 0*() ©)

8 The derivation of Equation (4) is included in Appendix 1 for completeness. This is the population
counterpart of Lehmann’s (1988) sample moment equation (5) divided by M.
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Written this way, it is apparent that expected profits may be decom-
posed into three terms: one (C,) depending on only the off-diagonals
of the autocovariance matrix I',, the second (O,) depending on only
the diagonals, and a third [¢?(n)] that is independent of the autoco-
variances. This allows us to separate the fraction of expected profits
due to the cross-autocovariances C, versus the own-autocovariances
O, of returns.

Equation (9) shows that the profitability of the contrarian strategy
(1) may be perfectly consistent with a positively autocorrelated mar-
ket index and negatively autocorrelated individual security returns.
Positive cross-autocovariances imply that the term C, is positive, and
negative autocovariances for individual securities imply that O, is
also positive. Conversely, the empirical finding that equal-weighted
indexes are strongly positively autocorrelated while individual secu-
rity returns are weakly negatively autocorrelated implies that there
must be significant positive cross-autocorrelations across securities.
To see this, observe that the first-order autocorrelation of the equal-
weighted index R, is simply

COV[Rp-1, Ry _ VTt _ VT — () ()
Var[R,,] Tyt Tyt VTt

(10)

The numerator of the second term on the right-hand side of Equation
(10) is simply the sum of the first-order autocovariances of individual
securities; if this is negative, then the first term must be positive in
order for the sum to be positive. Therefore, the positive autocorre-
lation in weekly returns may be attributed solely to the positive cross-
autocorrelations across securities.

The expression for L, also suggests that stock market overreaction
need not be the reason that contrarian investment strategies are prof-
itable. To anticipate the examples below, if returns are positively
cross-autocorrelated, then a return-reversal strategy will yield positive
profits on average, even if individual security returns are serially inde-
pendent! The presence of stock market overreaction, that is, nega-
tively autocorrelated individual returns, enhances the profitability of
the return-reversal strategy, but it is not required for such a strategy
to earn positive expected returns.

To organize our understanding of the sources and nature of con-
trarian profits, we provide five illustrative examples below. Although
simplistic, they provide a useful taxonomy of conditions necessary
for the profitability of the portfolio strategy (1).

2.1 The independently and identically distributed benchmark
Let returns R, be both cross-sectionally and serially independent. In
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this case I', = 0 for all nonzero k; hence,
L,=C,=0,=0 Hr(k)]=—0*(n) <0 (11)

Although returns are both serially and cross-sectionally unforecast-
able, the expected profits are negative as long as there is some cross-
sectional variation in expected returns. In this case, our strategy
reduces to shorting the higher and buying the lower mean return
securities, respectively, a losing proposition even when stock market
prices do follow random walks. Since ¢%(u) is generally of small
magnitude and does not depend on the autocovariance structure of
R, we will focus on L, and ignore ¢2(u) for the remainder of Section 2.

2.2 Stock market overreaction and fads

Almost any operational definition of stock market overreaction implies
that individual security returns are negatively autocorrelated over
some holding period, so that “what goes up must come down,” and
vice versa. If we denote by v,(k) the (4 )th element of the autoco-
variance matrix T, the overreaction hypothesis implies that the diag-
onal elements of T, are negative, that is, v,(k) < 0, at least for k=
1 when the span of one period corresponds to a complete cycle of
overreaction.® Since the overreaction hypothesis generally does not
restrict the cross-autocovariances, for simplicity we set them to zero,
that is, v;(k) = 0, i # j. Hence, we have

Y11 (R) 0 ce 0
r=| 9 w® 0 (12)
0 0 o Y (R)

The profitability index under these assumptions for R, is then

[N-—1
L,=0,= —< N2 )tr(I‘,e)

—(NA; 1) i yu(B) > 0 (13)

where the cross-autocovariance term C, is zero. The positivity of L,
follows from the negativity of the own-autocovariances, assuming N
> 1. Not surprisingly, if stock markets do overreact, the contrarian
investment strategy is profitable on average.

Another price process for which the return-reversal strategy will

9 See Section 4 for further discussion of the importance of the return horizon.
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yield positive expected profits is the sum of a random walk and an
AR(1), which has been recently proposed, by Summers (1986), for
example, as a model of “fads” or “‘animal spirits.” Specifically, let the
dynamics for the log-price X, of each security 7 be given by

Xp=Y,+ 2, (14)
where
Y,=u+ Y, +e Zy=p;Zyy t v, 0<p<1 (15

and the disturbances {¢,} and {v,} are serially, mutually, and cross-
sectionally independent at all nonzeroleads and lags.’ The kth-order
autocovariance for the return vector R, is then given by the following
diagonal matrix:

. 1—p, 1 — py
= diag| —pt— 2 et () | (16
k lag|: - pl <1 + p1>o"’l’ ) PN (1 + pN>6vN:| ( )

and the profitability index follows immediately as
N-1
L,=0,= —<T> tr(Ty)

N—1 < 1—p,
TN\’ >0 17
N2 f=1p <1+pi°' ( )

Since the own-autocovariances in Equation (16) are all negative, this
is a special case of Equation (12) and therefore may be interpreted
as an example of stock market overreaction. However, the fact that
returns are negatively autocorrelated at all lags is an artifact of the
first-order autoregressive process and need not be true for the sum
of a random walk and a general stationary process, a model that has
been proposed for both stock market fads and time-varying expected
returns [e.g., see Fama and French (1988) and Summers (1986)]. For
example, let the “temporary” component of Equation (14) be given
by the following stationary AR(2) process:

9 5
Zy= ; Zyq — ; Zyp t vy (18)

It is easily verified that the first difference of Z, is positively autocor-
related at lag 1 implying that L, < 0. Therefore, stock market over-
reaction necessarily implies the profitability of the portfolio strategy

' This last assumption requires only that ¢,_, be independent of ¢, for & # 0; hence, the disturbances
may be contemporaneously cross-sectionally dependent without loss of generality.
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(1) (in the absence of cross-autocorrelation), but stock market fads
do not.

2.3 Trading on white noise and lead-lag relations
Let the return-generating process for R, be given by

Ry=u,+ B;A_; + ¢, B.>0 i=1,...,N (19)

where A, is a serially independent common factor with zero mean
and variance o%, and the ¢,’s are assumed to be both cross-sectionally
and serially independent. These assumptions imply that for each secu-
rity 4, its returns are white noise (with drift) so that future returns to
i are not forecastable from its past returns. This serial independence
is not consistent with either the spirit or form of the stock market
overreaction hypothesis. And yet it is possible to predict #’s returns
using past returns of security j, where j < 7. This is an artifact of the
dependence of the ith security’s return on a lagged common factor,
where the lag is determined by the security’s index. Consequently,
the return to security 1 leads that of securities 2, 3, etc.; the return
to security 2 leads that of securities 3, 4, etc.; and so on. However,
the current return to security 2 provides no information for future
returns to security 1, and so on. To see that such a lead-lag relation
will induce positive expected profits for the contrarian strategy (1),
observe that when 2 < N, the autocovariance matrix I', has zeros in
all entries except along the kth superdiagonal, for which v, =
020,81, Also, observe that this lead-lag model yields an asymmetric
autocovariance matrix I',. The profitability index is then

2 N—

Ox

k
L.=C.= ﬁ B.B:4r> 0 (20)

i=1

This example highlights the importance of the cross effects—although
each security is individually unpredictable, a contrarian strategy may
still profit if securities are positively cross-correlated at various leads
and lags. Less contrived return-generating processes will also yield
positive expected profits to contrarian strategies, as long as the cross-
autocovariances are sufficiently large.

2.4 Lead-lag effects and nonsynchronous trading

One possible source of such cross effects is what has come to be
known as the “nonsynchronous trading” or “nontrading” problem,
in which the prices of distinct securities are mistakenly assumed to
be sampled simultaneously. Treating nonsynchronous prices as if they
were observed at the same time can create spurious autocorrelation
and cross-autocorrelation, as Fisher (1966), Scholes and Williams
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(1977), and Cohen et al. (1986) have demonstrated. To gauge the
importance of nonsynchronous trading for contrarian profits, we derive
the magnitude of the spurious cross-autocorrelations using the non-
trading model of Lo and MacKinlay (1989).1

Consider a collection of N securities with unobservable ‘‘virtual”

continuously compounded returns R, at time £, where i=1,..., N,
and assume that they are generated by the following stochastic model:
Ry=p, + B:A, + €, i=1,...,N (21)

where A, is some zero-mean common factor and ¢, is zero-mean idio-
syncratic noise that is temporally and cross-sectionally independent
at all leads and lags. Since we wish to focus on nontrading as the sole
source of autocorrelation, we also assume that the common factor A,
is independently and identically distributed and is independent of
€, forall 7, ¢, and k.

In each period ¢ there is some chance that security 7 does not trade,
say with probability p, If it does not trade, its observed return for
period tis simply 0, although its true or virtual return R, is still given
by Equation (21). In the next period ¢ + 1 there is again some chance
that security 7 does not trade, also with probability p,. We assume that
whether or not the security traded in period ¢ does not influence the
likelihood of its trading in period ¢ + 1 or any other future period;
hence, our nontrading mechanism is independent and identically
distributed for each security #.!2 If security 7 does trade in period ¢ +
1 and did not trade in period # we assume that its observed return
Re., at t + 1 is the sum of its virtual returns R,.,, R,, and virtual
returns for all past consecutive periods in which 7 has not traded. In
fact, the observed return in any period is simply the sum of its virtual
returns for all past consecutive periods in which it did not trade. This
captures the essential feature of nontrading as a source of spurious
autocorrelation: News affects those stocks that trade more frequently
first and influences the returns of thinly traded securities with a lag.
In this framework, the effect of news is captured by the virtual returns
process (21), and the lag induced by nonsynchronous trading is there-
fore built into the observed returns process Ry,

More formally, the observed returns process may be written as the
following weighted average of past virtual returns:

R,= D X,(WR,, i=1,...,N (22)
k=0

1t The empirical relevance of other nontrading effects, such as the negative autocorrelation of indi-
vidual returns, is beyond the scope of this study and is explored in depth by Atkinson et al. (1987)
and Lo and MacKinlay (1989).

2 This assumption may be relaxed to allow for state-dependent probabilities, that is, autocorrelated
nontrading [see Lo and MacKinlay (1989) for further details].
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Here the (random) weights X,,(k) are defined as products of no-trade
indicators:

Xo(k) = (1 — 0,)0,-10,— * * * 04s

_ ]1 with probability (1 — p)p# (23)
0 with probability 1 — (1 — p)p#

for k> 0, X,(0) = 1 — §,, and where the §,’s are independently and
identically distributed Bernoulli random variables that take on the
value 1 when security 7 does not trade at time # and 0 otherwise. The
variable X,(k) is also an indicator variable, and takes on the value 1
if security 7 trades at time ¢ but not in any of the & previous periods,
and takes on the value 0 otherwise. If security 7 does not trade at time
t, then §, = 1, which implies that X, (&) = 0 for all k; thus, R} = 0. If
i does trade at time ¢ then its observed return is equal to the sum of
today’s virtual return R, and its past Ie,, virtual returns, where the
random variable £, is the number of past consecutive periods that 7
has not traded. We call this the duration of nontrading, and it may
be expressed as

2 <H a,h,> (24)

To develop some intuition for the nontrading probabilities p;, observe
that

E{Eit] = pi/(l - P;) (25)

If p, = 3, then the average duration of nontrading for security 7 is one
period. However, if p, = 3, then the average duration of nontrading
increases to three periods. As expected if the security trades every
period so that p, = 0, the mean (and variance) of k, is zero.

Further simplification results from grouping securities with com-
mon nontrading probabilities into portfolios. If, for example, an equal-
weighted portfolio contains securities with common nontrading prob-
ability p,, then the observed return to portfolio x may be approxi-
mated as

R,Z u + (1 — p)B. Y PEA, (26)
k=0

where the approximation becomes exact as the number of securities
in the portfolio approaches infinity, and where B, is the average beta
of the securities in the portfolio.
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Now define R%(g) as the observed return of portfolio x over g
periods, that is, R%(q) = Z74_,),+; RS. We wish to work with time-
aggregated returns R? (g) to allow nontrading to take place at intervals
finer than the sampling interval.’* Using Equation (26), we have the
following moments and co-moments of observed portfolio returns:*4

E[R3)(q) < qu, = E[R.(q)] 27)
Var[R2,(q)] & [q - 2= ﬁ] 8203 (28)
CoV[RY_(@), R ()] é[i%’;‘] [i:—*ﬂ Hatiget k>0 (29)
Core(%-(@), Rin()) £ a ;)p? 21;(_11 5 k>0 G0
CovlRs (@), Ry () 2 LRI PO Pl g

al’b b, (31)

Corr[Rs,_ (), R%.(q)] = p(k)

s [(1 — (1 = ) ‘<1 - pz)zpk,,_qﬂ]

1 = pabs 1—py) " (32)

o 1-pz o 1-p\
x<\/q P \/q Zp"l—p%,)

where RS, (q) and Rg.(g) are the time-aggregated observed returns of
two arbitrary portfolios @ and b. Using (29) and (31), the effects of
nontrading on contrarian profits may be quantified explicitly. A lead—
lag structure may also be deduced from Equation (32). To see this,
consider the ratio of the cross-autocorrelation coeflicients:

pi(k) _ [(1 - pz)(l ~ pb)R%)"‘""“
ot.(k) — |\1 - p2)\1 = p.)]\p.

21 a  p,Ep, (33)

which shows that portfolios with higher nontrading probabilities tend
to lag those with lower nontrading probabilities. For example, if p,
> p, so that securities in portfolio b trade less frequently than those
in portfolio a, then the correlation between today’s return on @ and

13 So, for example, although we use weekly returns in our empirical analysis below, the implications
of nontrading that we are about to derive still obtain for securities that may not trade on some days
within the week.

14 See Lo and MacKinlay (1989) for the derivations.
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tomorrow’s return on bexceeds the correlation between today’s return
on b and tomorrow’s return on a.

To check the magnitude of the cross-correlations that can result
from nonsynchronous prices, consider two portfolios a and b with
daily nontrading probabilities p, = .10 and p, = .25. Using Equation
(32), with g = 5 for weekly returns and &= 1 for the first-order cross-
autocorrelation, yields Cort[R,,_;, R,] = .066 and Cor1[R,,,, R,] = .019.
Although there is a pronounced lead-lag effect, the cross-autocor-
relations are small. We shall return to these cross-autocorrelations in
our empirical analysis below, where we show that values of .10 and
.25 for nontrading probabilities are considerably larger than the data
suggest. Even if we eliminate nontrading in portfolio & so that p, =
0, this yields Corr[R,,—,, R,] = .070 and Corr[R,,_,, R,] = .000. There-
fore, as we shall see below, the magnitude of weekly cross-autocor-
relations cannot be completely attributed to the effects of nonsyn-
chronous trading.

2.5 A positively dependent common factor and the bid-ask
spread

A plausible return-generating mechanism consistent with positive
index autocorrelation and negative serial dependence in individual
returns is to let each R, be the sum of three components: a positively
autocorrelated common factor, idiosyncratic white noise, and a bid-
ask spread process.> More formally, let

Ri=wu,+BA +1n,+e¢, (34)
where

E[A]=0 E[A_A) = T.(R) > 0 (35)
E[Git] = E[nn] =0 Vi, t (36)

a? ifk=0and i=j
Elewses] = {0 otherwise ! (37)

—5425 ifk=1landi=j
E[nil—knjt] = (38)

0 otherwise

Implicit in Equation (38) is Roll’s (1984) model of the bid-ask spread,
in which the first-order autocorrelation of 7,, is the negative of one-
fourth the square of the percentage bid-ask spread s,, and all higher-
order autocorrelations and all cross-correlations are zero. Such a return-

' This is suggested in Lo and MacKinlay (1988). Conrad, Kaul, and Nimalendran (1988) investigate
a similar specification.
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generating process will yield a positively autocorrelated market index
since averaging the white-noise and bid—ask components will trivial-
ize them, leaving the common factor A,. Yet if the bid-ask spread is
large enough, it may dominate the common factor for each security,
yielding negatively autocorrelated individual security returns.

The autocovariance matrices for Equation (34) are given by

I, = n(DEE' — ;diagls}, &3, . .., s} (39)
o= m(Bs  k>1 (40)

where 8 = [, 8, - - - Bx]'. In contrast to the lead-lag model of Section
2.4, the autocovariance matrices for this return-generating process
are all symmetric. This is an important empirical implication that
distinguishes the common factor model from the lead-lag process,
and will be exploited in our empirical appraisal of overreaction.

Denote by 8,, the cross-sectional average 2, 8,/N. Then the prof-
itability index is given by

_ v NTls
Ll - N ’2:1 (ﬂi Bm) + N2 E 4 (41)
L=-20% 6,-80 k>1 42)

Equation (41) shows that if the bid—ask spreads are large enough and

. the cross-sectional variation of the 8,’s is small enough, the contrarian
strategy (1) may yield positive expected profits when using only one
lag (k= 1) in computing portfolio weights. However, the positivity
of the profitability index is due solely to the negative autocorrelations
of individual security returns induced by the bid-ask spread. Once
this effect is removed, for example, when portfolio weights are com-
puted using lags 2 or higher, relation (42) shows that the profitability
index is of the opposite sign of the index autocorrelation coefficient
v, (k). Since v,(k) > 0 by assumption, expected profits are negative
for lags higher than 1. In view of the empirical results to be reported
in Section 3, in which L, is shown to be positive for & > 1, it seems -
unlikely that the return-generating process (34) can account for the
weekly autocorrelation patterns in the data.

. An Empirical Appraisal of Overreaction

To see how much of contrarian profits is due to stock market over-
reaction, we estimate the expected profits from the return-reversal
strategy of Section 2 for a sample of CRSP NYSE-AMEX securities.
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Recall that E[r,(k)] = C, + O, — ¢*(u) where C, depends only on the
cross-autocovariances of returns and O, depends only on the own-
autocovariances. Table 3 shows estimates of E[w,(k)], Cy, O, and o?(u)
for the 551 stocks that have no missing weekly returns during the
entire sample period from July 6, 1962, to December 31, 1987. Esti-
mates are computed for the sample of all stocks and for three size-
sorted quintiles. All size-sorted portfolios are constructed by sorting
only once (using market values of equity at the middle of the sample
period); hence, their composition does not change over time. We
develop the appropriate sampling theory in Appendix 2, in which the
covariance-stationarity assumption 1 is replaced with weaker assump-
tions allowing for serial dependence and heterogeneity.

Consider the last three columns in Table 3, which show the mag-
nitudes of the three terms C,, O,, and ¢2(i) as percentages of expected
profits. At lag 1, half the expected profits from the contrarian strategy
are due to positive cross-autocovariances. In the central quintile,
about 67 percent of the expected profits is attributable to these cross
effects. The results at lag 2 are similar: Positive cross-autocovariances
account for about 50 percent of the expected profits, 66 percent for
the smallest quintile.

The positive expected profits at lags 2 and higher provide direct
evidence against the common component/bid-ask spread model of
Section 2.5. If returns contained a positively autocorrelated common
factor and exhibited negative autocorrelation due to “‘bid-ask bounce,”
expected profits can be positive only at lag 1; higher lags must exhibit
negative expected profits as Equation (42) shows. Table 3 shows that

" estimated expected profits are significantly positive for lags 2 through
4 in all portfolios except one.

The z-statistics for C,, Ok, and E[1r,(le)] are asymptotically standard
normal under the null hypothesis that the population values corre-
sponding to the three estimators are zero. At lag 1, they are almost
all significantly different from zero at the 1 percent level. At higher
lags, the own- and cross-autocovariance terms are generally insignif-
icant. However, estimated expected profits retains its significance
even at lag 4, largely as a result of the behavior of small stocks. The
curious fact that E[x,(k)] is statistically different from zero whereas
C.and O, are not suggests that there is important negative correlation
between the two estimators C,,, and O,e 16 That is, although they are
both noisy estimates, the variance of their sum is less than each of
their variances because they co-vary negatively. Since C, and O, are
both functions of second moments and co-moments, significant cor-
relation of the two estimators implies the importance of fourth co-

16 We have investigated the unlikely possibility that o*(2) is responsible for this anomaly; it is not.
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Table 3

Analysis of the profitability of the return-reversal strategy applied to weekly returns, for
the sample of 551 CRSP NYSE-AMEX stocks with nonmissing weekly returns from July 6,
1962, to December 31, 1987 (1330 weeks)

lag G foX Hr (B} (B!

&
Portfolio B (zstat) (zstat) o* ()! (zstat) (SDY) %-C, %0,  %-02(ft)
All stocks 1 0.841 0.862 .009 1.694 151.9 49.6 50.9 -0.5
(4.95)  (4.54) (20.81)  (31.0)
Smallest 1 2.048 2.493 .009 4.532 208.8 45.2 55.0 -0.2
(6.36) (7.12) (18.81) (47.3)
Central 1 0.703 0.366 .011 1.058 1384 66.5 34.6 -1.0
(4.67) (2.03) (13.84) (32.2)
Largest 1 0.188 0.433 .005 0.617 117.0 30.5 70.3 -0.8
(1.18) (2.61) (11.22) (28.1)
All stocks 2 0.253 0.298 .009 0.542 151.8 46.7 54.9 -1.6
(1.69) (1.67) (10.63)  (31.0)
Smallest 2 0.803 0.421 .009 1.216  208.8 66.1 34.7 -0.7
(3.29) (1.49) (8.86) (47.3)
Central 2 0.184 0.308 .011 0.481 1383 38.3 64.0 -2.3
(1.20) (1.64) (7.70)  (32.2)
Largest 2 —-0.053 0.366  .005 0.308 1169 -17.3 118.9 -1.6
(-039)  (2.28) (5.89) (28.1)
All stocks 3 0.223 —0.066 .009 0.149 151.7 149.9 —44.0 -59
(1.60) (-0.39) (3.01) (309
Smallest 3 0.552 0.038 .009 0.582 208.7 94.9 6.6 -1.5
(2.73) (0.14) (3.96) (47.3)
Central 3 0.237 -—0.192 .011 0.035 138.2 677.6 —546.7 —30.9
(1.66) (—1.07) (0.50) (32.1)
Largest 3 0.064 —0.003 .005 0.056 116.9 114.0 -53 —-8.8
(0.39) (-0.02) (1.23) (28.1)
All stocks 4 0.056 0.083 .009 0.130 151.7 43.3 63.5 -6.7
(0.43) (0.51) (2.40)  (30.9)
Smallest 4 0.305 0.159 .009 0.455 208.7 67.0 349 -1.9
(1.53) (0.59) (3.27) (47.3)
Central 4 0.023 —0.045 .011 —0.033 138.2 —2 —2 —2
(0.18) (—0.26) (—0.44) (32.0)
Largest 4 -0.097 0.128 .005 0.026 1168 —374.6 4934 —1838
(—0.65) 0.77) (0.52) (28.0)

Expected profits are given by Hwx (k)] = C, + O, — ¢*(n), where C, depends only on cross-
autocovariances and O, depends only on own-autocovariances. All z-statistics are asymptotically
N(0, 1) under the null hypothesis that the relevant population value is zero, and are robust to
heteroskedasticity and autocorrelation. The average long position (k) is also reported, with its
sample standard deviation in parentheses underneath. The analysis is conducted for all stocks as
well as for the five size-sorted quintiles; to conserve space, results for the second and fourth quintiles
have been omitted.

! Multiplied by 10,000.
2 Not computed when expected profits are negative.

moments, perhaps as a result of co-skewness or kurtosis. This is beyond
the scope of our article, but bears further investigation.

Table 3 also shows the average long (and hence short) positions
generated by the return-reversal strategy over the 1330-week sample
period. For all stocks, the average weekly long-short position is $152
and the average weekly profit is $1.69. In contrast, applying the same
strategy to a portfolio of small stocks yields an expected profit of $4.53
per week, but requires only $209 long and short each week on average.
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The ratio of expected profits to average long investment is 1.1 percent
for all stocks, and 2.2 percent for stocks in the smallest quintile. Of
course, in the absence of market frictions such comparisons are irrel-
evant, since an arbitrage portfolio strategy may be scaled arbitrarily.
However, if the size of one’s long-short position is constrained, as
is sometimes the case in practice, then the average investment figures
shown in Table 3 suggest that applying the contrarian strategy to
small firms would be more profitable on average.

Using stocks with continuous listing for over 20 years obviously
induces a survivorship bias that is difficult to evaluate. To reduce this
bias we have performed similar analyses for two subsamples: stocks
with continuous listing for the first and second halves of the 1330-
week sample, respectively. In both subperiods positive cross effects
account for at least 50 percent of expected profits at lag 1, and gen-
erally more at higher lags. Since the patterns are virtually identical
to those in Table 3, to conserve space we omit these additional tables.

To develop further intuition for the pattern of these cross effects,
we report in Table 4 cross-autocorrelation matrices T, for the vector
of returns on the five size-sorted quintiles and the equal-weighted
index using the sample of 551 stocks. Let Z, denote the vector [R;,
R,, R,, Ry, Rs, R,], where R, is the return on the equal-weighted
portfolio of stocks in the 7th quintile, and R, is the return on the
equal-weighted portfolio of all stocks. Then the kth-order autocor-
relation matrix of Z, is given by T, = D 2E[(Z,_, — ) (Z, — u)']
x D~V where D = diag[e?, . . ., 0%, 0%] and up = E[Z]. By this
convention, the (j )th element of T, is the correlation of R,_, with
R,. The estimator T, is the usual sample autocorrelation matrix. Note
that it is only the upper left 5 X 5 submatrix of T, that is related to
T',, since the full matrix T, also contains autocorrelations between
portfolio returns and the equal-weighted market index R,,,."”

An interesting pattern emerges from Table 4: The entries below
the diagonals of T, are almost always larger than those above the
diagonals (excluding the last row and column, which are the auto-
covariances between portfolio returns and the market). This implies
that current returns of smaller stocks are correlated with past returns
of larger stocks, but not vice versa, a distinct lead-lag relation based
on size. For example, the first-order autocorrelation between last
week’s return on large stocks (Rs,_,) with this week’s return on small
stocks (R,,) is 27.6 percent, whereas the first-order autocorrelation
between last week’s return on small stocks (R,,_,) with this week’s
return on large stocks (Rs,) is only 2.0 percent! Similar patterns may

7 We include the market return in our autocovariance matrices so that those who wish to may compute
portfolio betas and market volatilities from our tables.
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Table 4

Autocorrelation matrices of the vector Z, = [R, R, R, R;, R,, R,] where R, is the return
on the portfolio of stocks in the ith quintile, i=1, ..., 5 (quintile 1 contains the smallest
stocks) and R, is the return on the equal-weighted index, for the sample of 551 stocks
with nonmissing weekly returns from July 6, 1962, to December 31, 1987 (1330 obser-
vations) .

Rl! RZI Ri! &l ‘RSI le

R, ™ 1.000 0.919 0.857 0.830 0.747 0918 ]
R, 0.919 1.000 0.943 0.929 0.865 0.976
= R, 0.857 0.943 1.000 0.964 0.925 0.979
o Re, 0.830 0.929 0.964 1.000 0.946 0.974
R, 0.747 0.865 0.925 0.946 1.000 0.933

R, L o918 0.976 0.979 0.974 0.933 1.000 ]
Rll RZI R3f R‘! RSI Rm.'

Re, [ 0333 0.244 0.143 0.101 0.020 0.184 ]
Rys 0.334 0.252 0.157 0.122 0.033 0.195
% = R, 0.325 0.265 0.175 0.140 0.051 0.207
! R 0.316 0.262 0.177 0.139 0.050 0.204
R 0.276 0.230 0.154 0.122 0.044 0.178

R., L 0333 0.262 0.168 0.130 0.041 0202 |
Ry, R, R, R, R, Rt

R., [ 0.130 0.087 0.044 0.022 0.005 0.064 ]
Ry s 0.133 0.101 0.058 0.039 0.017 0.076
&= Ry, 0.114 0.088 0.046 0.027 0.002 0.061
2 Ry 0.101 0.085 0.048 0.029 0.008 0.059
R 0.067 0.055 0.020 0.008 —0.012 0.031

R... L 0115 0.087 0.045 0.026 0.004 0.061 _|
R, R, R, Ry, R, Ront

Ros [ 0.089 0.047 0.015 0.013 —0.005 0.036 ]
Ry s 0.094 0.066 0.038 0.041 0.018 0.056
£ = Rus 0.096 0.079 0.059 0.061 0.041 0.072
s Ry 0.084 0.067 0.047 0.049 0.031 0.059
R, , 0.053 0.044 0.031 0.034 0.015 0.038

Rn., L 0087 0.063 0.038 0.040 0.020 0.054 |
Rll RZI RSI &! RSI le

Re. [ 0.050 0.001  —0.014 —0.029 —0.030 -0.002 ]
Ry 0.064 0.023  —0.002 —0.012 —0.020 0.014
- Ry 0.065 0.029 0.006 —0.002 —0.017 0.019
‘ Ry 0.072 0.042 0.017 0.005 —0.008 0.029
R, 0.048 0.023 0.002 —0.007 —0.022 0.011

Rus L 0062 0.024 0.001 ~0.010 —0.021 0.014 _|

Note that T, = D-2E[(Z,_, — 1) (Z, — p)')D~* where D = diag[e?, . . ., 0%, 0%, thus the 4, jth element
is the correlation between R, and R,. Asymptotic standard errors for the autocorrelations under
an i.i.d. null hyphothesis are given by 1/\/7 = 0.027.

be seen in the higher-order autocorrelation matrices, although the
magnitudes are smaller since the higher-order cross-autocorrelations
decay. The asymmetry of the T, matrices implies that the autocovar-
iance matrix estimators I', are also asymmetric. This provides further
evidence against the sum of the positively autocorrelated factor and
the bid-ask spread as the true return-generating process, since Equa-
tion (34) implies symmetric autocovariance (and hence autocorre-
lation) matrices.
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Of course, the nontrading model of Section 2.4 also yields an asym-
metric autocorrelation matrix. However, it is easy to see that unreal-
istically high probabilities of nontrading are required to generate
cross-autocorrelations of the magnitude reported in Table 4. For
example, consider the first-order cross-autocorrelation between R,,_,
(the return of the second-smallest quintile portfolio) and R,, (the
return of the smallest quintile portfolio), which is 33.4 percent. Using
Equation (32) with £= 1 and g = 5 days, we may compute the set of
daily nontrading probabilities (p,, p,) of portfolios 1 and 2, respec-
tively, that yield such a weekly cross-autocorrelation. For example,
the combinations (.010, .616), (.100, .622), (.500, .659), (.750, .700),
and (.990, .887) all yield a cross-autocorrelation of 33.4 percent. But
none of these combinations are empirically plausible nontrading
probabilities—the first pair implies an average duration of nontrading
of 1.6 days for securities in the second smallest quintile, and the
implications of the other pairs are even more extreme! Figure 1 plots
the iso-autocorrelation loci for various levels of cross-autocorrela-
tions, from which it is apparent that nontrading cannot be the sole
source of cross-autocorrelation in stock market returns.’®

Further evidence against nontrading comes from the pattern of
cross-autocorrelations within each column of the first-order autocor-
relation matrix T,.% For example, consider the first column of T, whose
first element is .333 and fifth element is .276. These values show that
the correlation between the returns of portfolio a this week and those
of portfolio b next week do not change significantly as portfolio a
varies from the smallest firms to the largest. However, if cross-auto-
correlations on the order of 30 percent are truly due to nontrading
effects, Equation (32) implies an inverted U-shaped pattern for the
cross-autocorrelation as portfolio a is varied. This is most easily seen
in Figure 2a and b, in which an inverted U-shape is obtained by
considering the intersection of the cross-autocorrelation surface with
a vertical plane parallel to the p, axis and perpendicular to the p,
axis, where the intersection occurs in the region where the surface
rises to a level around 30 percent. The resulting curve is the non-
trading-induced cross-autocorrelation for various values of p,, hold-
ing p, fixed at some value. These figures show that the empirical
cross-autocorrelations are simply not consistent with nontrading, either
in pattern or in the implied nontrading probabilities.

8 Moreover, the implications for nontrading probabilities are even more extreme if we consider
hourly instead of daily nontrading, that is, if we set g = 35 hours (roughly the number of trading
hours in a week). Also, relaxing the restrictive assumptions of the nontrading model of Section
2.4 does not affect the order of magnitude of the above calculations. See Lo and MacKinlay (1989)
for further details.

19 We are grateful to Michael Brennan for suggesting this analysis.
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Figure 1

Losci of nontrading probability pairs (p,, p,) that imply a constant cross-autocorrelation
p4,(k), for pi,(k) = .05, .10, .15, .20, .25, k=1, 9=5

If the probabilities are interpreted as daily probabilities of nontrading, then pg,(&) represents the
first-order weekly cross-autocorrelation between this week’s return to portfolio @ and next week’s
return to portfolio bwhen g=5and &= 1.

The results in Tables 3 and 4 point to the complex patterns of cross
effects among securities as significant sources of positive index auto-
correlation, as well as expected profits for contrarian investment rules.
The presence of these cross effects has important implications, irre-
spective of the nature of contrarian profits. For example, if such profits
are genuine, the fact that at least half may be attributed to cross-
autocovariances suggests further investigation of mechanisms by which
aggregate shocks to the economy are transmitted from large capital-
ization companies to small ones.

Long Horizons Versus Short Horizons

Since several recent studies have employed longer-horizon returns
in examining contrarian strategies and the predictability of stock
returns, we provide some discussion here of our decision to focus
on weekly returns. Distinguishing between short- and long-return
horizons is important, as it is now well known that weekly fluctuations
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Cross-autocorrelation pZ,(k) as a function of p, and p,, forq =5, k=1

a: Front view; b: rear view.
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in stock returns differ in many ways from movements in three- to five-
year returns. Therefore, inferences concerning the performance of
the long-horizon strategies cannot be drawn directly from results such
as ours. Because our analysis of the contrarian investment strategy
(1) uses only weekly returns, we have little to say about the behavior
of long-horizon returns. Nevertheless, some suggestive comparisons
are possible.

Statistically, the predictability of short-horizon returns, especially
weekly and monthly, is stronger and more consistent through time.
For example, Blume and Friend (1978) have estimated a time series
of cross-sectional correlation coefficients of returns in adjacent months
using monthly NYSE data from 1926 to 1975, and found that in 422
of the 598 months the sample correlation was negative. This propor-
tion of negative correlations is considerably higher than expected if
returns are unforecastable. But in their framework, a negative cor-
relation coeflicient implies positive expected profits in our Equation
(4) with &= 1. Jegadeesh (1988) provides further analysis of monthly
data and reaches similar conclusions. The results are even more strik-
ing for weekly stock returns, as we have seen. For example, Lo and
MacKinlay (1988) show evidence of strong predictability for portfolio
returns using New York and American Stock Exchange data from 1962
to 1985. Using the same data, Lehmann (1988) shows that a contrarian
strategy similar to Equation (1) is almost always profitable.?’ Together
these two observations imply the importance of cross effects, a fact
we established directly in Section 3.

Evidence regarding the predictability of long-horizon returns is
more mixed. Perhaps the most well-known studies of a contrarian
strategy using long-horizon returns are those of DeBondt and Thaler
(1985, 1987) in which winners are sold and losers are purchased, but
where the holding period over which winning and losing is deter-
mined is three years. Based on data from 1926 through 1981 they
conclude that the market overreacts since the losers outperform the
winners. However, since the difference in performance is due largely
to the January seasonal in small firms, it seems inappropriate to attrib-
ute this to long-run overreaction.*

» Since such profits are sensitive to the size of the transactions costs (for some cases a one-way
transactions cost of 0.40 percent is sufficient to render them positive half the time and negative
the other half), the importance of Lehmann’s findings hinges on the relevant costs of turning over
securities frequently. The fact that our Table 3 shows the smallest firms to be the most profitable
on average (as measured by the ratio of expected profits to the dollar amount long) may indicate
that a round-trip transaction cost of 0.80 percent is low. In addition to the bid-ask spread, which
is generally $0.125 or larger and will be a larger percentage of price for smaller stocks, the price
effect of trades on these relatively thinly traded securities may become significant.

21 See Zarowin (1988) for further discussion.
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Fama and French (1988) and Poterba and Summers (1988) have
also examined the predictability of long-horizon portfolio returns and
find negative serial correlation, a result consistent with those of
DeBondt and Thaler. However, this negative serial dependence is
quite sensitive to the sample period employed and may be largely
due to the first 10 years of the 1926 to 1987 sample [see Kim, Nelson,
and Startz (1988)]. Furthermore, the statistical inference on which
the long-horizon predictability is based has been questioned by Rich-
ardson (1988), who shows that properly adjusting for the fact that
multiple time horizons (and test statistics) are considered simulta-
neously yields serial correlation estimates that are statistically indis-
tinguishable from zero.

These considerations point to short-horizon returns as the more
immediate source from which evidence of predictability and stock
market overreaction might be culled. This is not to say that a careful
investigation of returns over longer time spans will be uninformative.
Indeed, it may be only at these lower frequencies that the effect of
economic factors, such as the business cycle, is detectable. Moreover,
to the extent that transaction costs are greater for strategies exploiting
short-horizon predictability, long-horizon predictability may be a more
genuine form of unexploited profit opportunity.

Conclusion

Traditional tests of the random walk hypothesis for stock market
prices have generally focused on the returns either to individual
securities or to portfolios of securities. In this article, we show that
the cross-sectional interaction of security returns over time is an
important aspect of stock-price dynamics. We document the fact that
stock returns are often positively cross-autocorrelated, which recon-
ciles the negative serial dependence in individual security returns
with the positive autocorrelation in market indexes. This also implies
that stock market overreaction need not be the sole explanation for
the profitability in contrarian portfolio strategies. Indeed, the empir-
ical evidence suggests that less than 50 percent of the expected profits
from a contrarian investment rule may be attributed to overreaction;
the majority of such profits are due to the cross effects among the
securities. We have also shown that these cross effects have a very
specific pattern for size-sorted portfolios: They display a lead-lag
relation, with the returns of larger stocks generally leading those of
smaller ones. But a tantalizing question remains to be investigated:
What are the economic sources of positive cross-autocorrelations across
securities?
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Appendix 1: Derivation of Equation (4)
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Appendix 2: Sampling Theory for C., O,, and E‘[w,(k)]

To derive the sampling theory for the estimators ék, 6,e, and E[w,(le)],
we reexpress them as averages of artificial time series and then apply
standard asymptotic theory to those averages. We require the follow-
ing assumptions:

Assumption A1. For all t, i, j, and k the following condition is satisfied
Jor finite constants K> 0,6 > 0, and r = 0:

E[| Ry o Ry|*"*?] < K < 00 (A8)

Assumption A2. The vector of returns R, is either a-mixing with coef-
ficients of size 2r/(r — 1) or ¢-mixing with coefficients of size
2r/(2r — 1).

These assumptions specify the trade-off between dependence and
heterogeneity in R, that is admissible while still permitting some form
of the central limit theorem to obtain. The weaker is the moment
condition (Assumption A2), the quicker the dependence in R, must
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decay, and vice versa.?? Observe that the covariance-stationarity of R,
is not required. Denote by C,, and O,, the following two time series:

. 1 ~ .
Cu = RoesRove = iy = 2 D (RiwRy — A2 (A9)
i=1
N—1 .
O = —— E (RisRy — i) (A10)

i=1
where 4, and g, are the usual sample means of the returns to security

i and the equal-weighted market index, respectively. Then the esti-
mators C,, O,, and ¢%(4i) are given by

" 1 T
C —3
R 1 L
0, = o)
e = km};l e (A12)
1 N
o*(g) = NE s = fim)? (A13)
i=1

Because we have not assumed covariance-stationarity, the population
quantities C, and O, obviously need not be interpretable according
to Equation (8) since the autocovariance matrix of R, may now be
tihe dependent. However, we do wish to interpret C, and O, as some
fixed quantities that are time independent; thus, we require:

Assumption A3. The following limits exist and are finite:

T
lim > E[Cu =G, (A14)
-0 T — kS5,

T
lim D E[O,] = O, (A15)
o T — R 25

Although the expectations E(C,,) and E(O,,) may be time dependent,
Assumption A3 asserts that their averages converge to well-defined
limits; hence, the quantities C, and O, may be viewed as “average”
cross- and own-autocovariance contributions to expected profits, Con-
sistent estimators of the asymptotic variance of the estimators C, and
O, may then be obtained along the lines of Newey and West (1987),
and are given by ¢% and 42, respectively, where

62 = —Ti—k[vzk«» 2y aj<q)~7¢,z(f>] . (a16)

2 See Phillips (1987) and White (1984) for further discussion of this trade-off.
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i 1 . < A o
62 = ———9,,(0) + 2 ) & ()70, ()
T— & ~
ol =1-—L— g<r (a17)

qt+1
and ¥, (/) and ¥,,(5) are the sample jth order autocovariances of the
time series C, and O,, respectively, that is,

FD = D (Cu— G (Cu— ) (A18)

T—k t=k+j+1

T
Fo) =7 D (0w, 0)(0,= 0 (M19)
: t=k+j+1

Assuming that g~ o(T*), Newey and West (1987) show the consis-
tency of ¢2 and 62 under our Assumptions A1-A3.?> Observe that these
asymptotic variance estimators are robust to general forms of heter-
oskedasticity and autocorrelation in the C,,and O, time series. Since
the derivation of heteroskedasticity- and autocorrelation-consistent
standard errors for the estimated expected profits E[r,(k)] is virtually
identical, we leave this to the reader.
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