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Event studies are widely used to study the information content of
corporate events. Such studies typically have two purposes: (1) to test
for the existence of an “information effect” (i.e., the impact of an event
on the announcing firm’s value) and to estimate its magnitude, and
(2) to identify factors that explain changes in firm value on the event
date.

To test for the existence of an information effect, empirical finance
has primarily employed the technique developed in Fama, Fisher,
Jensen, and Roll (1969) (referred to as FFJR hereafter). FFJR suggest
that if an event has an information effect, there should be a nonzero
stock-price reaction on the event date. Thus, inference is based on
the statistical significance of the average announcement effect1 for
a sample of firms announcing the event in question. The FFJR test
is usually followed by a linear regression of announcement effects
on a set of firm-specific factors to identify those factors that explain
the cross-section of announcement effects. Most event studies in the
applied literature have been based on the above methods.2

However, recent literature on conditional event-study methods
[Acharya (1988, 1993), Eckbo, Maksimovic, and Williams (1990)] ar-
gues that the traditional methods are misspecified in a rational ex-
pectations context. Briefly, the argument is that corporate events are
voluntary choices of firms and are typically initiated when firms come
to possess information not fully known to markets. The unexpected
portion of such information should determine the stock-price reaction
to the event.

When events are modeled in this manner within simple equilib-
rium settings, the resulting specifications are typically nonlinear cross-
sectional regressions3 that bear little resemblance to the simple mod-
els conventionally used in event studies. Hence, it has been suggested
that the conventional methods are misspecified and lead to unreliable
inferences, implying that such methods should not be used in prac-
tice. More generally, this debate does raise the important issue that
though the standard event-study procedures have been widely used in
empirical work, little is understood about their consistency and power

1 Announcement effect (or abnormal return) denotes the excess of the actual event-date stock
return over the unconditional expected return for the stock. The latter is usually estimated via the
market model, calibrated on pre-event data [see Brown and Warner (1985) for a more complete
discussion].

2 A partial list of applications includes studies of (1) equity and debt issues [Asquith and Mullins
(1986), Eckbo (1986)], (2) timing of equity issues [Korajczyk, Lucas, and McDonald (1991)], (3)
takeovers [Asquith, Bruner, and Mullins (1983)], (4) dividends [Bajaj and Vijh (1990)], and (5) stock
repurchases [Vermaelen (1984)].

3 The nonlinearity stems from the endogeneity of events. Endogeneity truncates the statistical dis-
tribution of announcement effects.
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in rational expectations settings, such as those underlying conditional
methods.

This article has three purposes. First, we present a simple exposition
of conditional methods that focuses on their economic content. We
show that all conditional models have essentially the same economic
intuition, and derive all received models within a common framework
that reflects this perspective. This synthesis reconciles different speci-
fications proposed in the literature, clarifies their shared intuition, and
suggests how one might choose between or extend such models in
practice.

Our second point is that while traditional event-study techniques
are indeed misspecified in the conditional methods context, they still
lead to valid inferences, under certain statistical conditions described
in this article. Specifically, even when event-study data are generated
exactly as per conditional models of the sort introduced by Acharya
(1988), (1) the FFJR procedure remains a well-specified test for de-
tecting the existence of information effects; and (2) the conventional
cross-sectional procedure yields parameter estimates proportional to
the true conditional model parameters, under the conditions men-
tioned before. The proportionality factor has a simple interpretation
in terms of the informational parameters of the event. These results
provide, for the first time, an equilibrium justification for the proce-
dures conventionally used to conduct event studies.

Finally, if both traditional and conditional methods lead to equiv-
alent inferences, how does one choose between the two in practice?
Working in the context of the conditional model proposed by Acharya
(1988), we develop simulation evidence on this issue. Our evidence
suggests that one’s choice would depend mainly on whether one has,
besides the usual event-study data, an additional sample of “nonevent”
firms, that is, firms that were partially anticipated to announce but did
not announce the event in question. If such nonevent data are avail-
able, conditional methods are powerful means of conducting event
studies and may be implemented effectively using a simple “two-step”
estimator. Absent nonevent data, conditional methods appear to offer
little value relative to traditional procedures.

This article is organized along the above lines. Section 1 presents
conditional methods for event studies. Section 2 presents and dis-
cusses the main analytic results, regarding the equivalence of infer-
ences via conditional and traditional event-study methods. Section 3
motivates the question of choosing between the two approaches, and
Section 4 outlines the structure of the simulations conducted to ad-
dress this question. Simulation results are presented in Section 5, and
Section 6 offers concluding comments.
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1. On Conditional Methods

Section 1 develops conditional models for event studies. The main
point made here is that all conditional models have essentially the
same economic intuition: they relate announcement effects to the un-
expected information revealed in events. While the notion of relating
announcement effects to unexpected information is not new, we show
here that it is the common theme that underlies all conditional models.
We demonstrate that all received models may be derived in terms of
this framework, and that the models differ only because they make dif-
ferent assumptions about the information structure underlying events.

The exposition proceeds as follows. Section 1.1 opens with a dis-
cussion of the intuition underlying conditional methods. Section 1.2
discusses alternative ways of modeling the information structure in
events, and Sections 1.3 through 1.5 develop econometric models for
announcement effects for each of these information structures.

1.1 Intuition underlying conditional methods
To begin, note the potential dichotomy between the fact of an event
and the information it reveals. For instance, the event “takeover” is
plausibly less surprising for a bidder with announced acquisition pro-
grams than for a bidder with no history of acquisitions. Similarly, the
event “dividend increase” is less surprising for a firm with an unusually
good spell of earnings than for a firm with flat or declining earnings.
Thus, a given event may convey less information for some firms and
more for others. Further, it should be the unexpected information
revealed in events that causes the stock-price changes around event
dates.4

This discussion suggests the following empirical procedure for car-
rying out event studies: (1) estimate for each firm the unexpected
information that the event reveals; (2) compute the cross-sectional
correlation between information and abnormal return and test for
its significance. A nonzero correlation would indicate that abnormal
return is systematically related to information revealed in the event
(i.e., there exists an information effect). Conversely, zero correlation
implies lack of an information effect. This intuition underlies every
conditional specification analyzed in this article.

Central to the conditional paradigm is the notion of “information
revealed in events.” Next, we discuss how this might be modeled in
the event-study context.

4 Malatesta and Thompson (1985), Thompson (1985), and Chaplinsky and Hansen (1993) also
recognize the role of partial anticipation of events and examine its implications for event studies
based on FFJR-style procedures.
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1.2 Specifying the information structure
As argued before, events reveal the information that their announce-
ment is conditioned on. Suppose that this information consists of a
variable τi , which arrives at firm i on an information arrival date.
Information τi is subsequently revealed to markets, via the event, on
an event date.

What do markets learn from the revelation of τi ? Clearly, this de-
pends on what markets knew, prior to the actual event date, about the
arrival of information τi at firm i. Here, we allow for three possibilities:

Assumption 1. Markets know, prior to the event, that the event-related
information τi has arrived at firm i (but not its exact content).

Assumption 2. Markets do not know, prior to the event, that infor-
mation τi has arrived at firm i.

Assumption 3. Markets assess a probability p ∈ (0, 1) that informa-
tion τi has arrived at firm i.

Under Assumption 1, information arrival is common knowledge
prior to the event; under Assumption 2, markets do not know about
information arrival prior to the event-date. Finally, Assumption 3 is
the encompassing case that permits markets to make probabilistic
assessments about information arrival.5 Each assumption leads to a
different econometric specification for announcement effects, as we
show below.

For expositional ease and because previous work has been based
on Assumptions 1 and 2, we first develop the methodology under
Assumptions 1 and 2, in Sections 1.3 and 1.4. We then present an
encompassing specification, based on Assumption 3, in Section 1.5.

1.3 Model I: information arrival known prior to event
We begin by making Assumption 1: that markets know, prior to the
event, that the event-related information τi has arrived at firm i. In
general, this leads markets to form expectations about τi . Suppose
these expectations are given by

E−1(τi) = θ ′xi =
n∑

j=1

θj xij (1)

5 The following example illustrates the distinction between the three assumptions. Consider the
event “takeover” and suppose takeovers occur if and only if the acquirer-bidder synergy (τ ) is
positive. Assumption 1 implies that markets always know, prior to each takeover announcement,
that the bidder had identified the target in question. The only uncertainty is whether τ is positive
or not. In contrast, Assumption 2 implies that markets do not know, prior to each announcement,
that the target had been identified. Under Assumption 3, markets assign probability p ε (0, 1) that
the target had been identified.
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where xi denotes a vector of firm-specific variables in the pre-event
market information set, and θ is a vector of parameters. Given Equa-
tion (1), firm i’s private information ψi is given by

ψi = τi − E−1(τi), (2)

where E−1(ψi) = 0, with no loss of generality.
In what follows next, we model an event as an announcement that

each firm chooses to make (or not to make), depending on the nature
of its information τi . Our goal is to develop econometric models for
the resultant announcement effect.

To fix matters, consider a situation in which each firm i must choose
between two mutually exclusive and collectively exhaustive alterna-
tives on the event date: either the firm must announce the event (E )
or the nonevent (N E ). Suppose that the firm’s decision depends on
its information τi , as follows:

E ⇔ τi ≥ 0 ⇔ ψi + θ ′xi ≥ 0 (3)

N E ⇔ τi < 0 ⇔ ψi + θ ′xi < 0 (4)

The choice model, Equations (3) and (4), reflects that the decision to
announce an event is an endogenous choice of firms: here, event E is
announced if and only if conditioning information τ is “large enough.”
Otherwise, the “nonevent” N E is announced.6

What do markets learn from firm i’s announcement? Given Equa-
tions (3) and (4), firm i’s choice between E and N E partially reveals its
private information ψi , and thereby leads markets to form revised ex-
pectations about the value of ψi . The revised expectation, E (ψi | C ),
C∈{E ,N E }, constitutes the unexpected information on the event date.

If there is an information effect (i.e., the information revealed has
a stock-price effect), we should find abnormal returns (say ε) to be
related to unexpected information. This relationship is linear under
the following (jointly sufficient) assumptions.

Assumption 4. Risk Neutrality: Investors are risk-neutral towards the
event risk.

Assumption 5. Linearity: Conditioning information is a linear signal
of expected stock return. That is, E (ri | ψi) = πψi , where ri stands for
stock return, and ψi for conditioning information.

6 Conditioning on τ being “large enough,” — equivalently, a sample selection bias — characterizes
all voluntary corporate events. For instance, takeovers plausibly occur if and only if the personal
or corporate gains (τ ) from acquiring are positive; dividend increases are announced only when
future earnings (τ ) are “large enough” to sustain higher dividends, and so on. The fact that τ is
a function of elements x in the pre-event information set captures the effect that some firms are
more likely to announce the event than others.

6



Conditional Methods in Event Studies

Thus, if the event has an information effect, π should be significant
in the nonlinear cross-sectional specifications:

E (εi | E ) = πE (ψi | E ) = πE (ψi | θ ′xi + ψi ≥ 0), (5)

and

E (ε | N E ) = πE (ψi | N E ) = πE (ψi | θ ′xi + ψi < 0), (6)

where εi is the event-date abnormal return for firm i. Intuitively, when
firm i makes an announcement C , it signals that the expected return,
given its information, is E (ri | C ) = πE (ψi | C ) (via Assumption 5).
Under risk neutrality, E (ri | C ) also equals the expected event-date
abnormal return E (εi | C ).7

If private informationψi is distributed normally, N (0, σ 2), the above
models may be rewritten as

E (εi | E ) = πσ n(θ ′xi)/σ

N (θ ′xi/σ)
= πσλE (θ

′xi/σ), (7)

and

E (εi | N E ) = πσ −n(θ ′xi/σ)

1− N (θ ′xi/σ)
= πσλN E (θ

′xi/σ), (8)

where n(·) and N (·) denote the normal density and distribution, re-
spectively, and λC (·) denotes the updated expectation of private in-
formation ψ , given the firm’s choice C ε{E ,N E }.

Equation (7), our first “conditional” specification for announcement
effects, was introduced by Acharya (1988). The model admits to two
sets of hypothesis tests:

1. Test for existence of information effect : A test for significance
of π indicates whether announcement effects (ε) are related to the
information revealed in the event [λC (·)], that is, whether there exists
an information effect.

2. Factors explaining announcement effects: A test for significance
of coefficients θj ( j = 1, 2, . . . , k) identifies from the set xj ( j =
1, 2, . . . , k) those factors that explain the cross-section of announce-
ment effects.

7 With risk aversion, we have two cases of potential interest. For firm-specific events of the sort
analyzed here, announcement effects will be shifted upwards since (priced) uncertainty is resolved
on the event date. In other words, E−1(εi) > 0. An interesting second case relates to events
aggregate in character (such as federal interventions in fixed-income markets) and in which event
risk is priced. Here λC (·), the “private information” is aggregate, and may be interpreted as a
zero mean innovation in a priced APT factor. If the event risk is priced under a linear pricing
operator, the risk-premium for the event could be estimated using cross-sectional and time-series
data, much as in standard empirical APT studies [e.g., McElroy and Burmeister (1988)].
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That the model is consistent with equilibrium follows from (1) risk
neutrality towards event risk, and (2) the fact that the ex ante expected
abnormal return is zero:

6k=E ,N E E (εi | k) ∗ Prob(k)

= πσ {λE (·) ∗ N (θ ′xi/σ)+ λN E (·) ∗ [1− N (θ ′xi/σ)]}
= 0. (9)

With this discussion in hand, it is fairly straightforward to develop
binary event models under the alternate information structures, As-
sumptions 2 and 3. We present these models next and close Section 1
with a discussion on how one might choose between the three spec-
ifications in practice.

1.4 Model II: information arrival not known prior to event
Equation (7) was based on Assumption 1, under which markets knew
ex ante about the arrival of information τ . Suppose instead that the
framework is Assumption 2: markets do not know ex ante about in-
formation arrival.8 We now consider the conditional model for this
situation.

Given Assumption 2, pre-event expectations about τi were not
formed. Hence, τi itself (as opposed to ψi in the previous section)
is firm i’s private information. As before, the conditional expectation
of private information (here τi), given event E , constitutes the infor-
mation revealed by E . This variable must be related to announcement
effects, linearly so under Assumptions 1 and 2, if the event has an
information effect. That is, π should be significant in the model

E (εi | E ) = πE (τi | E ) = πE (τi | τi ≥ 0)

= π
[
θ ′xi + λE (θ

′xi/σ)
]
, (10)

where the last equality is obtained by using τi = θ ′xi + ψi . Equa-
tion (10) — hereafter, the EMW model — was, in essence, introduced
by Eckbo, Maksimovic, and Williams (1990).

For some intuition, compare the EMW model, Equation (10), with
the Acharya model, Equation (7). The EMW model has the extra term
θ ′xi — the unconditional expectation of τi . In the Acharya model, pre-
event expectations of τ led to its unconditional expectation, (θ ′xi),
being incorporated into the stock price prior to the event. Here, pre-
event expectations were not formed (under Assumption 2); hence,

8 This is the case, for instance, in takeover announcements involving bidders with no history of
acquisitions or targets not previously in play. Here, markets plausibly do not know, prior to the
actual takeover announcement, that the acquirer had identified the relevant target and that some
announcement related to the acquisition was forthcoming.
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the term θ ′xi appears in the expression for the abnormal return on
the event date. Thus, contrary to a claim in Acharya (1993), we note
that the EMW model is not nested within the Acharya model. The two
models differ in their assumptions about the underlying information
structure.

Both models are, in fact, limiting cases of a binary event model
based upon Assumption 3. We derive this encompassing specification
next and clarify the sense in which it nests the Acharya and EMW
models.

1.5 Model III: information arrival partially known
Suppose now that the information structure is described by Assump-
tion 3: markets assess a probability p that information τi has arrived
at firm i. Given Equation (1), the stock-price reaction in light of the
assessed probability p is given by

E−1(εi) = pπθ ′xi .

Now, if event E does occur, it conveys two pieces of information.
First, it confirms that information τ has arrived at firm i, that is, the
probability of information arrival is raised from p to 1. Second, it
conveys via choice model Equations (3) and (4) that θ ′xi + ψ > 0.
Together, the two pieces of information lead to an announcement
effect given by

E (εi | E ) = π
[
(1− p)θ ′xi + σλE

(
θ ′xi

σ

)]
. (11)

It is easily seen that Equation (11) nests the EMW and Acharya models
as the special cases p = 0 and p = 1, respectively. The traditional
event-study methods never obtain as the appropriate specifications,
for any value of p.

How does one choose between these conditional specifications in
practice? The preceding discussion demonstrates that this choice is es-
sentially a matter of picking the informational assumption appropriate
to one’s context. Specifically, the EMW model is probably a good ap-
proximation of Equation (11) for nonrepetitive announcements whose
timing is not well-identified ex ante. On the other hand, when mar-
kets are reasonably certain that some event-related announcement is
forthcoming, the Acharya model is appropriate. For intermediate sit-
uations, Equation (11) is appropriate. Its practical value is not known
and awaits empirical applications, as all received work is based on
the EMW and Acharya models.

For the discussion that follows, we focus on the Acharya model,
Equation (7), (i.e., the case when p ≈ 1) since the EMW model, Equa-
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tion (10), a “truncated regression” specification [see Greene (1993) or
Maddala (1983)] has been treated fairly extensively in the economet-
ric literature. By contrast, the properties of Equation (7) are not as
well-understood: they are related to, but differ in interesting ways
from, those of standard “selectivity” models. Hence, we focus on
the Acharya model, Equation (7), next and through the rest of this
article.

2. On Inferences Via Traditional Methods

The conditional specifications developed in Section 1 are quite differ-
ent from traditional event-study procedures. How might one interpret
inferences via traditional methods in light of this difference?

Working in the context of the Acharya model, Equation (7), we
make two points. Specifically, we argue that even when event-study
data are generated exactly as per Equation (7), (1) the FFJR procedure
is well-specified as a test for existence of information effects (i.e., the
hypothesis π = 0), whether or not any of the factors x explain an-
nouncement effects; and (2) the traditional cross-sectional procedure
yields regression coefficients proportional to the true cross-sectional
parameters θ , under conditions to be described shortly. Thus, while
traditional techniques are indeed misspecified in the sense discussed
before, the implications of such misspecification are probably not as
serious as the previous literature [Acharya (1988, 1993), Eckbo, Mak-
simovic, and Williams (1990)] suggests. Conventional methods do al-
low one to conduct significance tests for both π and cross-sectional
parameters θ , despite these parameters being potentially estimated
inconsistently.

It is relatively straightforward to establish that the FFJR procedure
may be viewed as a test of the hypothesis π = 0.9 The cross-sectional
results need some argument though, and we present these in what
follows next.

2.1 The conventional cross-sectional procedure
The conventional cross-sectional procedure may be written as a test
of significance of regression coefficients (β1, . . . , βk) in the linear

9 Take expectations over conditioning factors x in Equation (7). The unconditional (over x) an-
nouncement effect, given event E , is given by Ex (εi | E ) = πσEx [λE (·)], which is nonzero if and
only if π is nonzero [since λE (·) > 0]. Hence, detecting a nonzero unconditional announcement
effect, as in the FFJR procedure, is equivalent to an observation that π is nonzero. Variants of the
FFJR procedure, such as those introduced in Schipper and Thompson (1983), possess a similar
interpretation.
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regression

E (ε | E ) = β0 + β ′x = β0 + β1x1 + · · · + βkxk (12)

estimated for a sample of firms announcing event E (firms announcing
N E are not considered by the conventional procedure), where we
have dropped firm-specific subscript i for notational ease. The linear
model, Equation (12), is clearly misspecified, given the conditional
model, Equation (7). What sort of inferences might it yield, if used
anyway? That is, are regression coefficients β related in some way to
the true cross-sectional parameters θ of Equation (7)?

Such a relationship does exist and, under fairly weak conditions,
it takes a simple form: each linear regression coefficient βj is propor-
tional to true coefficient θj . Additionally, every βj is biased towards
zero, relative to θj .

The underlying intuition is illustrated by the following observation:
the true slope sj of Equation (7) is attenuated relative to θj .10 Formally,

sj = ∂E (ε | E )
∂xj

= −θjπδ(y), (13)

where y = θ ′x/σ and δ(y) = λE (y)[λE (y) + y ]. Since (1) | π |< 1 (it
is a correlation), and (2) 0 < δ(y) < 1,11 it follows immediately from
Equation (13) that | sj |<| θj |. One might conjecture on this basis that
each regression coefficient βj is biased towards zero, relative to θj ,
with the opposite sign if π > 0.12 Further, Equation (13) also suggests
that downward bias should be greater when

1. | π | is small. Here, announcement effects are less sensitive to
conditioning information. Hence, regression coefficients βj should be
smaller.

2. δ(y) is small. This happens when y = θ ′x/σ is large [Goldberger
(1983)], that is, for highly anticipated events. Here, little information is
contained in firms’ announcements of E or resultant abnormal returns.
Once again, estimated regression coefficients βj should be smaller.

Precisely these results obtain when regressors x are multivariate
normally distributed. Proposition 1 contains the formal statement.

10 In a different setting, Lanen and Thompson (1988) also suggest that slope sj may be attenuated
due to partial anticipation of the event.

11 Interpreting π as a correlation involves the normalization var (ε) = σ . The bounds on δ(y) follow
from two properties of the standard normal variable z — (1) E (z | z > −y) = λE (y) is decreasing
in y, that is, λ′E (y) = - δ(y) < 0; and (2) var (z | z > −y) = 1− δ(y) > 0 [Greene (1993)].

12 The linear regression itself does not necessarily estimate the slope of the nonlinear function [see,
e.g., Stoker (1986), White (1980)].
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Proposition 1. Suppose (1) event E occurs if and only if θ0 +∑k
j=1 θj xj + ψ > 0; and (2) information ψ and abnormal return

ε are bivariate normal with correlation π and marginal distributions
N(0,1); and regressors (x1, . . . , xk) are multivariate normal, indepen-
dent of ψ .13 Then, coefficients (β1, . . . , βk) in the linear model, Equa-
tion (12), estimated for a sample of firms announcing E are given
by

βj = −θjπ
(1− R2)(1− t)

t + (1− R2)(1− t)
= −θjπµ, (14)

where
1. t = var (τ | E )/var (τ ), τ = θ ′x + ψ .
2. R2 = coefficient of determination (“explained variance”) in the

population regression of τ on (1, x1, . . . , xk).
3. µ = (1−R2)(1−t)

t+(1−R2)(1−t)

See the Appendix for the proof.

To interpret the proportionality factor µ, observe that (1) the term
(1−R2) represents the variance of τ not explained by public informa-
tion x , that is, the unexpected component of information τ ; and (2)
term (1 − t) proxies the information revealed by event E. Therefore,
the product of the two — and hence the term µ — represents the
unexpected component of information τ revealed by event E. Another
way of viewing this is to consider the fraction of information τ that
is lost by restricting oneself to event E. Part of information τ is lost
to (1) pre-event expectations and (2) the nonevent NE. The constant
µ represents the fraction of information τ that remains in event E.
Thus, µ is small when the event reveals little information; conversely,
µ is large for highly surprising events. This intuition is formalized in
Lemma 1.

Lemma 1. Let µ be as defined above. Then (1) 0 < µ < 1, and (2) µ
is small when event E is, on average, highly anticipated.

See the Appendix for the proof.

13 In the choice model underlying Proposition 1, firms choose between E and N E based on latent
information τ . Condition (2) specifies how the latent information maps into stock-return informa-
tion since it is the latter that causes observed announcement effects. Multivariate normality of (x ,
τ ) is stronger than what is needed for Proposition 1 to obtain. All we need is that the conditional
expectation E (x | τ) be linear in τ . Multivariate normality is sufficient, though not necessary for
this condition to hold. Finally, note that while firms have two choices (E or N E ) in the event
modeled here, Proposition 1 also applies to events in which each announcing firm has more than
two choices — such as dividend announcements, wherein firms have three choices (increase,
keep unchanged, or decrease dividends).

12



Conditional Methods in Event Studies

With these results in hand, one can readily establish useful com-
parative statics about regression coefficients βj :
• Downward bias in βj ’s. This is an immediate consequence of

0 < µ < 1 (Lemma 1), | π |< 1, and Equation (14); together, these
imply that | βj |≤| θj |.
• Opposite Sign. Each βj is signed opposite to θj , provided π > 0, as

seen from Equation (14). To understand this result, note that θj reflects
the marginal impact of an increase in regressor xj on the probability of
event E , while βj reflects the marginal impact on the announcement
effect associated with E . Since an increase in the probability of event
E decreases the expected announcement effect upon announcing E
if π > 0, θj and βj have the opposite sign when π > 0.
• More attenuation when | π | is small. This follows directly from

Equation (14).
• More attenuation when events are highly anticipated. For highly

anticipated events, µ is small, from part 2 of Lemma 1. From Propo-
sition 1, this implies that | βj | is small.

Summarizing, Proposition 1 has the interesting implication that the
traditional cross-sectional procedure may be used for cross-sectional
inferences in event studies. Specifically, a statistical test for significance
of regression coefficient βj , ( j = 1, . . . , k), is equivalent to a test for
significance of the corresponding cross-sectional parameter θj of the
conditional model.

However, for practical purposes, two questions remain. One, while
Proposition 1 provides an interpretation of the linear regression co-
efficients, are the usual OLS standard errors appropriate for use in
significance tests? Second, how robust is Proposition 1 to the assump-
tion that regressors x are multivariate normal? Simulation evidence
needs to be developed on these issues.

3. Issues in Choosing Event-Study Methodology

Section 2 suggests that under certain conditions, both conditional and
traditional methods are valid means of inference. How might one
choose between the two approaches in practice? We address this issue
in the context of cross-sectional inferences, as conditional methods are
likely to be useful only when cross-sectional hypotheses are being
tested.14

One’s choice between the two approaches would depend primarily
on the performance of each method (i.e., the likelihood of making

14 Simulation evidence on the FFJR procedure (reported in earlier versions of this article) attest to
this point. These results are available upon request.
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correct inferences about the sign and significance of cross-sectional
parameters θ), given typical event-study samples. We argue that the
relative performance of the two approaches must be considered in
two distinct cases:

1. All assumptions satisfied : To begin, suppose that event-study data
are generated exactly as per Equation (7) and that the assumptions
underlying Proposition 1 are satisfied, so that both conditional and
traditional methods are equally valid means of inference. Even so,
is there any reason why one method might be preferred over the
other? Section 3.1 considers this question. We argue that even in this
“ideal” case, one’s choice should depend on what data one has —
specifically, whether one has a sample of nonevent firms or not.

2. Some assumptions not satisfied : To motivate the second case,
observe that the conditional model, Equation (7), places a fairly tight
statistical structure on announcement effects. Not all of its econometric
assumptions may be satisfied in practice. Hence, we also consider
separately the question of methodological choice when some of the
assumptions underlying the conditional model are not satisfied. This
issue is addressed in Section 3.2.

One’s choice would also depend, to some extent, on the compu-
tational burden involved in estimation, which is likely to be greater
for the conditional model. Section 3.3 discusses these computational
issues and presents a brief summary that motivates the empirical work
to follow.

3.1 Choice when all assumptions are satisfied
With the identifying normalization w = πσ and θ = θ

σ
[equivalently,

var (ψ) = σ 2 = 1], the conditional model, Equation (7), consists of a
“probit” model governing firms’ choices between event E and non-
event N E :

C =
{

E if θ ′xi + ψ > 0
N E if θ ′xi + ψ < 0

(15)

coupled with a heteroskedastic cross-sectional regression for an-
nouncement effects,

εi = wλC (θ
′xi)+ ei, (16)

and

var (ei | C ) = σ 2
ε − w2λC (θ

′xi)[λC (θ
′xi)+ θ ′xi ],

where C ε {E, NE } is firm i’s choice, σ 2
ε = var (εi), and ei is an error

term.
In this section, we argue that even if event-study data are generated

exactly as above, and the results of Section 2 hold, conditional meth-
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ods would be, a priori, one’s preferred means of inference, under
some conditions. Specifically, if one has, besides a sample of firms
announcing event E , additional data on nonevent firms (those an-
nouncing N E ), conditional methods are likely to be preferred over
traditional methods.

To see why, observe that under the traditional approach, event
studies are conducted using only data on firms that announced event
E . However, Equations (15) and (16) point to the existence of a sec-
ond category of firms: nonevent firms, that is, firms that were partially
anticipated to announce but chose not to announce the event in ques-
tion. Such firms are not used under the traditional procedure. On the
other hand, nonevent information may be exploited in the conditional
framework by estimating the conditional model with both event and
nonevent data. Thus, when nonevent data are available, conditional
methods should be more powerful relative to traditional methods.

In most practical situations though, nonevent data are not avail-
able. Nonevent data include (1) a set of firms that were anticipated to
announce but chose not to announce the event in question; (2) the
time when markets learn of the non-announcement; and (3) cross-
sectional and announcement effect data on this date. Usually, such
information cannot be obtained [Lanen and Thompson (1988) make
a similar point], and one must work with only the firms that have an-
nounced event E . Here, both conditional and traditional procedures
use the same data in estimation, and there is little to choose between
the two procedures from an informational viewpoint, if Proposition 1
holds. However, Proposition 1 does not generalize for arbitrary distri-
butions of regressors x . Thus, if x does not satisfy the distributional
assumptions of Proposition 1, conditional methods may be preferred
since traditional procedures might give misleading inferences in this
instance. We develop some Monte-Carlo simulation evidence on the
seriousness of this issue.

Thus, in the benchmark case, one’s choice of methodology depends
on what data one has. If nonevent data are available, conditional
methods are likely to be preferred; absent nonevent data, one’s choice
is less clear, and the issue warrants empirical investigation.

3.2 Choice when some assumptions are not satisfied
In the benchmark case, we assumed that event-study data are gen-
erated exactly as per the conditional model. However, some of the
model’s statistical assumptions may not be satisfied in practice. In this
section, we discuss why such deviations might arise and examine the
implications for one’s choice of event-study methodology.

The first issue, raised in the econometric literature on “selectiv-
ity” models, relates to the sensitivity of Equations (15) and (16) to
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nonnormality of private information ψ . Recollect that in developing
Equations (16), ψ was assumed to be normally distributed. If ψ is
in fact nonnormal, estimates based on the normality assumption are
inconsistent.

There is little consensus on the seriousness of the nonnormality
issue or on the value of alternate models robust to this distributional
assumption. Received evidence has been essentially mixed on both
scores [Arabmazar and Schmidt (1982); Goldberger (1983); Lee (1982,
1983); Newey, Powell, and Walker (1990)]. However, all reported evi-
dence pertains to selectivity models that are quite different in focus15

from that of event-study specification, Equation (16). Its relevance to
the event-study situation is not clear, motivating the need to develop
evidence more specific to our context.

A second concern relates to data problems that are endemic to the
event-study situation [Brown and Warner (1985)]. Two issues are of
particular relevance here:

1. Noise in announcement effects: Announcement effects are in-
evitably measured with noise, due to the need to estimate the cali-
brating market model. Additionally, noise may be induced by uncer-
tainty about the true event date, non synchronous trading, or bid-ask
spreads in prices, as well as any changes in sources of valuation not
observable to the econometrician. Thus, it is difficult to isolate the
portion of stock returns exclusively attributable to announcement of
the event.

2. Cross-sectional correlation: Models such as Equation (16) are
almost always estimated assuming that latent information ψ is cross-
sectionally independent. However, in the event-study context, ψ is
often cross-sectionally correlated, due to common macroeconomic or
industry influences on firms’ decisions to announce events, or due to
clustering of event dates in calendar time.

While problems such as these do exist in practice, little is known
about how they impact one’s inferences via either event-study ap-
proach. In particular, are inferences via the conditional model affected
more than those via the simpler traditional procedure? We develop
some evidence along these lines in the work to follow.

15 The prototype selectivity model is the regression E (εi | E ) = β ′z +πλE (θ
′x). This class of models

focuses almost exclusively on consistent estimation of parameters β of the unconditional mean

function β ′z . In contrast, our interest primarily centers on estimates of selectivity parameters θ ,
which is a subject of lesser interest in the selectivity literature (note that in the EMW model,
Equation (10), β = θ since p is essentially zero). However, parameter β may also be of interest
sometimes in the event-study context. For example, in the encompassing model, Equation (11),
where β = θ(1− p), estimates of β might be of interest since they allow one to estimate parameter

p and conduct related hypothesis tests. No such tests have been reported yet in the literature.
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3.3 Computational considerations
The practical value of conditional specifications such as Equations (15)
and (16) depends, to some extent, on the computational burden in-
volved in estimation. Estimation turns out to be quite straightforward,
provided one has both event and nonevent data. However, estima-
tion is more demanding when one has only event data, as we discuss
below.

To begin, consider the issue of estimating the conditional model
when one has both event and nonevent data. In this setting, two nat-
ural estimation techniques are (1) maximum likelihood (ML) and (2)
nonlinear least squares (NLS). However, consistent estimation may
also be achieved through a simple two-step procedure [Heckman
(1979)]. To motivate the two-step procedure, observe that in Equa-
tion (16), if one had consistent estimates of parameters θ [and hence
of λC (·)], regression of ε on λC (·) would lead to consistent estimates
of w. This suggests a computationally simple procedure for estimating
the conditional model:

1. Estimate the “probit” choice model, Equation (15), to obtain con-
sistent estimates of θ , say θ̂ .

2. Use θ̂ to compute λC (·) for each observation and obtain w by OLS
estimation of Equation (16), adjusting standard errors appropriately
[see Greene (1981) and Heckman (1979)].

The two-step procedure offers two other advantages, relative to ML
and NLS estimators, in the particular context of event studies. First,
cross-sectional inferences under the two-step procedure do not re-
quire announcement-effect data. Hence, the abnormal return mea-
surement problems discussed in Section 3.2 are no longer an is-
sue in cross-sectional inferences. A more interesting consequence
is that cross-sectional estimates via the two-step method are con-
sistent not only for the Acharya model, Equation (16), but also for
the EMW model, Equation (10), and the encompassing specification,
Equation (11) as well, unlike ML and NLS estimates, which are model-
specific.

Robustness, however, comes at a cost: the two-step procedure is
not efficient precisely for the same reason it is robust, that is, the first
step does not use announcement effect data. Announcement effects
represent markets’ assessments about the information conditioning
the event and should add efficiency in cross-sectional parameter esti-
mation. Nevertheless, our evidence indicates that such efficiency gains
are typically small.16 Hence, in the empirical work that follows, we

16 The evidence was found in simulations with ML and NLS estimators. With large samples, or when
w is known, additional information in announcement effects should clearly make cross-sectional
parameter estimates more precise relative to those obtained via the two-step method. In finite
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use the two-step estimator whenever both event and nonevent data
are available.

Suppose, on the other hand, that one has only event data. In this
setting, the two-step procedure is not available, and the conditional
model must be estimated via ML or NLS. Estimation now involves
optimization of a nonstandard maximand, and, as we describe later,
successful convergence requires some experimentation with numer-
ical procedures and parameters governing the optimization process.
From a computational perspective, the conditional model is less attrac-
tive since estimation now involves greater effort. Whether such effort
leads to more powerful inferences, relative to those via the much sim-
pler traditional procedure, remains to be seen, and we explore this
issue in the empirical work to follow.

To summarize, Section 3 has raised issues concerning one’s choice
of event-study methodology, and we address these issues via simula-
tions. Our discussion also suggests how such simulation experiments
should be organized. Specifically, simulations ought to be carried out
for the case when all assumptions underlying the conditional model
are met and, separately, when they are not met. In each instance,
two sets of data should be used: one comprising event data only, and
another comprising both event and nonevent data.

Section 4 details the broad structure of our simulation experiments,
and Section 5 presents the simulation results.

4. Experiment Design

In broad terms, our experiment consists of three steps: (1) simula-
tion of event-study data as per the conditional model; (2) introduc-
tion, where relevant, of problems such as nonnormality into the data;
and (3) estimation of model parameters by alternative event-study
techniques. Some remarks on our design choices are in order before
moving to the details.

Two of our choices are different from ones made in related work
by Acharya (1993). Acharya simulates regressors x from the normal
distribution. We sample x from the uniform distribution. As analytic
results (Section 2.1) are available for normally distributed regressors,
a nonnormal alternative was desired, leading to our choice. Second,
our sample sizes (100 or 250) are much smaller than the size (800)
used in Acharya (1993). Our choice is governed by two considera-
tions: (1) these represent sample sizes typically used in event studies

samples and when w must be estimated, the gains should be smaller. Indeed, under ML and NLS,
the primary improvement relative to the two-step method was found to lie in the precision of
estimates of w.
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in corporate finance; (2) given the results of Section 2, both condi-
tional and traditional procedures yield equivalent inferences in large
samples. Thus, large sample comparisons of the two methods, the
focus of previous work, are not relevant to the question of choosing
between them in practice.

Our regressor and parameter choices give an adjusted R2 of about
10% if the linear probability model is used to estimate the underlying
choice model. The experiment design is similar to ones used previ-
ously in econometric literature [Nelson (1984), Paarsch (1984), Wales
and Woodland (1980)].

We now describe in some detail the methodology used to (1) sim-
ulate the event and abnormal return data, and (2) construct the test
statistics.

4.1 Broad design
1. Event : For i = 1, 2, . . . ,n (the sample size), the event was simulated
to occur as

E ⇔ θ0 + θ1x1i + θ2x2i + ψi ≥ 0,

and

NE ⇔ θ0 + θ1x1i + θ2x2i + ψi < 0,

where
• θ0 = 1, θ1 = −1, θ2 = 0.01
• Regressor x2i , i = 1, 2, . . . ,n, was drawn independently and iden-

tically distributed (i.i.d.) from a uniform distribution U(0,100) once for
each set of 400 simulations.
• Regressor x1i , i = 1, 2, . . . ,n, was also drawn once for every

set of 400 simulations, i.i.d. from a uniform distribution with support
of unit length. The support location was varied, so as to get average
event probabilities of 25% or 50%.17

• ψi was drawn i.i.d. from the normal distribution N(0,1), ex-
cept in experiments addressing nonnormality issues. Here, ψi was
drawn from one of four nonnormal distributions: Laplace, Logistic,
Chi-square or Student’s t . We normalized the draw to unit variance/zero
mean by (1) subtracting the mean, and (2) dividing by the standard
deviation of the relevant distribution.

2. Abnormal return: Data for abnormal return were simulated as
εi = wψi + vi , where vi is i.i.d. noise with (a) E (vi) = 0, and (b)
var (vi) = 1 − w2 (this normalization sets the unconditional variance

17 When the average event probability was 50%, x1 had support (1, 2), except when ψ was χ2

distributed, when it had support (1.2, 2.2). For 25% average event probability, the support varied
from (1.5, 2.5) to (1.75, 2.75), depending on the distribution.
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of εi to unity) and the same distribution as ψi .18 Each set of 400
simulations was repeated for three values of w — 0.30, 0.50, and 0.75
— going from less-informative (in terms of information contained in
abnormal return) to more-informative events.

3. Sample Size: Each set of 400 simulations was repeated for two
sample sizes — 100 and 250.

4. Number of replications: Statistics are based on 400 replications
of each simulation.

4.2 Simulation methodology
A typical set of 400 simulations proceeds as follows:

1. Fix the desired average event probability, sample size, w, and
distribution for ψi .

2. Draw a sample of regressors x2i and x2i to conform to the target
average event probability fixed in step (1) above. This sample of x ’s
is fixed for all 400 repetitions. We then repeat steps (3) through (5)
400 times.

3. Simulate ψi from the target distribution. Normalize ψi to zero
mean/unit variance.

4. Simulate abnormal return data for each firm i, as in Section 4.1.
5. Estimate parameters θ , w, and β as appropriate and compute

associated t -statistics.
Each set of 400 simulations is repeated for (1) three values of w —
0.30, 0.50, and 0.75; (2) two average event probabilities — 25% and
50%; and (3) two sample sizes — 100 and 250.

4.3 Reported statistics
Every set of 400 simulations yields 400 point estimates of w and θ ,
together with associated t -statistics. From these, we compute the fol-
lowing statistics.
• Mean: This denotes the average of the 400 point estimates of the

relevant parameter.
• Std. error : This is the sample standard deviation of the 400 param-

eter estimates, from their simulated distribution. This should be equal
to the standard error implied in the asymptotic t -statistics in individ-
ual simulations, provided the relevant estimator attains its asymptotic
distribution.
•Mean t-stat : Every simulation produces a t -statistic for each model

parameter. Mean t -stat denotes the average of the 400 t -statistics.

18 There are no natural form representations for the implied bivariate distributions of (ψ , ε). Known
bivariate forms corresponding to the univariate distributions used here (e.g., bivariate logistic,
bivariate Student’s t) have nonlinear conditional first moments, which is inconsistent with our
Assumption 5.
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Table 1
Performance of conditional model: base case

Sample size = 100 Sample size = 250

Model Std. Mean Std. Mean
parameter Truth Mean error t -stat Mean error t -stat

Average event probability = 25%

w 0.30 0.31 0.13 2.30 0.30 0.09 4.27
w 0.50 0.50 0.13 3.81 0.50 0.08 6.01
w 0.75 0.74 0.11 6.38 0.75 0.08 10.13
θ0 1.00 1.04 0.51 2.05 0.99 0.31 3.27
θ1 −1.00 −1.04 0.52 −1.97 −0.98 0.32 −3.12

100θ2 1.00 1.02 0.52 1.99 0.96 0.31 3.08

Average event probability = 50%

w 0.30 0.30 0.12 2.37 0.32 0.08 4.45
w 0.50 0.50 0.12 4.12 0.50 0.08 6.64
w 0.75 0.76 0.11 6.83 0.74 0.07 10.74
θ0 1.00 0.99 0.75 1.36 0.97 0.46 2.08
θ1 −1.00 −1.00 0.48 −2.15 −0.98 0.30 −3.36

100θ2 1.00 1.00 0.47 2.20 1.02 0.29 3.46

Table 1 presents statistics relating to the conditional model’s performance when all underlying
assumptions are satisfied.

We simulate event E to occur if and only if θ0+ θ1x1i + θ2x2i +ψi > 0, where θ0 = 1, θ1 = −1,
and θ2 = 0.01. Information ψi , i = 1, 2, . . . ,n (n is the sample size), is i.i.d. normal, N(0,1).
Expected event-date abnormal return, conditional on ψi , is simulated as E (εi | ψi) = wψi .

In each simulation, we sample ψi and εi as above. We then apply the two-step method to
estimate parameters w and θ . This process is repeated 400 times; each set of 400 simulations is
carried out for (1) 3 values of w — (0.30, 0.50, and 0.75), (2) two sample sizes — (100 and 250),
and (3) two average event probabilities (25% and 50%). From each set of 400 repetitions, we
compute and report the following statistics: (1) Mean: mean parameter point estimate, averaged
over the 400 repetitions; (2) Std. error : standard error of parameter estimate, computed as the
sample standard deviation of the 400 point estimates; (3) Mean t-stat : Each repetition generates a
t -statistic for the relevant parameter estimate. Mean t -stat refers to the mean of the 400 t -statistics.
As estimates of θ are obtained independent of w, we report only one set of statistics for θ that
applies to all three values of w.

5. Simulation Results

We present the simulation results in three parts. Section 5.1 discusses
the conditional model’s performance when both event and nonevent
data are available. Here, we examine the model’s sensitivity to non-
normality and various event-study data problems mentioned before.
Section 5.2 evaluates the traditional cross-sectional procedure, and fi-
nally, Section 5.3 discusses the conditional model’s performance when
only event data are available.

5.1 Conditional model: event and nonevent data
5.1.1 Base case. Our first set of results concerns the conditional
model’s performance when all underlying assumptions are satisfied.
These results are presented in Table 1. As first-step estimates of θ are
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independent of the true w, we report only one set of statistics for θ ,
which applies to all four values of w.

Discussion of results. It is useful to analyze our results in two parts,
one pertaining to the Probit estimates of θ , and the other pertaining
to second-step estimates of w.

Probit estimates of θ1 and θ2 (our main objects of interest) are close
to truth on average, as expected. The average t -statistic for θ1 (or θ2)
is about 2.0 for a sample size of 100 and about 3.0 for a sample size
of 250. This corresponds to power of rejecting the hypothesis θ1 = 0
of about 50% and 86%, respectively (at 5% size).19

Next, consider the point estimates of w. Average estimates of w are
close to truth. As true w increases, associated t -statistics get larger. For
samples of size 100, the average t -statistic increases from about 1.4
for w = 0.20 to about 3.8 for w = 0.50, corresponding to power of 29%
and 96%, respectively. Larger w are virtually certain to be picked up.

Finally, observe that standard errors used within simulations to con-
struct the t -statistics are close to their true values. For instance, for 25%
event probability and sample size of 100, the standard error implied
in the probit t -statistic for θ1 is 0.528 (1.04

1.97 = θ1
tθ1

). This is almost exactly
equal to the true standard error, 0.52 (see column Std. error), obtained
from the simulated distribution of parameter estimates θ1. Similar re-
sults are seen to hold for every other parameter, highlighting that the
estimates do conform to their asymptotic distribution.

In the remainder of Section 5.1, we artificially introduce statistical
and data problems into the data and report the conditional model’s
performance under these conditions.

5.1.2 Nonnormality. What sort of inferences does the procedure
based on normality yield, when ψi is actually nonnormal? To address
this issue, we simulate data as in Section 5.2, from the assumed non-
normal distribution, and estimate θ and w using the two-step pro-
cedure based on normality. Four nonnormal distributions were con-
sidered, based on previous literature [Arabmazar and Schmidt (1982),
Goldberger (1983), and Lee (1982, 1983)]: (1) logistic, (2) Student’s t
(5 degrees of freedom), (3) Chi-square (5 degrees of freedom), and
(4) Laplace. The conditional moments and density functions of the
four distributions are detailed in Goldberger (1983) and Lee (1982).
The degrees of freedom in distributions (2) and (3) were kept small
to maximize their departure from normality.

19 Here, we define power as the probability of not committing a Type II error, that is, of rejecting
the null hypothesis H0 : θk = 0. In practice, the test’s power is obtained as the fraction of the 400
t -statistics for θ1 exceeding tcr it ical = 1.96, the cutoff for a 5% significance level.
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Table 2
Normality-based estimator when information is laplace distributed

Sample size = 100 Sample size = 250

Model Std. Mean Std. Mean
parameter Truth Mean error t -stat Mean error t -stat

Average event probability = 25%

w 0.30 0.28 0.14 2.13 0.28 0.09 3.32
w 0.50 0.47 0.14 3.40 0.47 0.07 5.55
w 0.75 0.70 0.12 6.06 0.70 0.08 8.86
θ0 1.00 1.26 0.59 2.22 1.24 0.36 3.46
θ1 −1.00 −1.25 0.53 −2.41 −1.23 0.31 −3.85

100θ2 1.00 1.25 0.53 2.43 1.21 0.31 3.85

Average event probability = 50%

w 0.30 0.27 0.13 2.10 0.28 0.08 3.50
w 0.50 0.46 0.12 3.73 0.45 0.07 5.77
w 0.75 0.69 0.12 6.40 0.69 0.07 9.76
θ0 1.00 1.41 0.80 1.80 1.36 0.46 2.90
θ1 −1.00 −1.41 0.50 −2.80 −1.36 0.30 4.54

100θ2 1.00 1.40 0.49 2.82 1.35 0.31 4.44

Table 2 presents statistics relating to the conditional model’s performance, when conditioning
information ψi is incorrectly assumed to be standard normal.

We simulate event E to occur if and only if θ0+θ1x1i+θ2x2i+ψi > 0, where θ0 = 1, θ1 = −1, and
θ2 = 0.01. Information ψi , i = 1, 2, . . . ,n (n is the sample size), is i.i.d., sampled from the Laplace
distribution (normalized to unit variance). Expected event-date abnormal return, conditional on
ψi , is simulated as E (εi/ψi) = wψi .

In each simulation, we sample ψi and εi as above. We then apply the two-step method
based on normality to estimate parameters w and θ . This process is repeated 400 times; each
set of 400 repetitions is carried out for (1) 3 values of w (0.30, 0.50, and 0.75), (2) two sample
sizes (100 and 250), and (3) two average event probabilities (25%, 50%). From each set of 400
simulations, we compute and report the following statistics: (1) Mean: mean parameter point
estimate, averaged over the 400 repetitions; (2) Std. error : standard error of parameter estimate,
computed as the sample standard deviation of the 400 point estimates; and (3) Mean t-stat : Each
repetition generates a t -statistic for the relevant parameter estimate. Mean t -stat refers to the mean
of this t -statistic, averaged over the 400 repetitions. As estimates of θ are obtained independent
of w, we report only one set of statistics for θ for each average event probability/sample size.
This applies to all three values of w.

Discussion of results. Table 2 presents results for the Laplace distri-
bution. Qualitatively similar results obtain for other distributions and
are not reported here.

Not surprisingly, point estimates of θ1 and θ2 in Table 2 are quite dif-
ferent from their true values. The difference reflects that the normality-
based estimator is inconsistent when the true distribution of ψ is non-
normal. However, note that the sign and order of these estimates are
similar to those in Table 1, where data actually come from the normal
distribution; the associated t -statistics are also of a similar magnitude.
Thus, for the nonnormal distributions considered here, there seems to
be little impact on one’s inferences, reflecting the apparent robustness
of inferences via the probit step.

Next, consider estimates of w. Point estimates of w are close to
truth everywhere but are slightly attenuated. For example, when true
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w = 0.75, average estimates range from 0.69 to 0.70. Nonnormality
introduces a new source of noise into the second-step regressor λk(·),
that of approximating it by its counterpart based on normality. This
introduces “measurement error” into λk(·), which attenuates estimated
w. In all instances though, the amount of attenuation is small, and the
t -statistics for w are close to their corresponding values in Table 1.

As before, standard errors implied in t -statistics are roughly equal
to their values from the empirical distribution of simulated parameter
estimates, despite the misspecification engendered by nonnormality.
Thus, nonnormality does lead to inconsistent parameter estimates but
does not appear to impact one’s inferences about the significance of
model parameters.

5.1.3 Noise in announcement effects. As discussed in Section 3.2,
announcement effects are always measured with noise in practice.
In this section, we examine how such noise affects the conditional
model’s performance.

The experiment here involves simulating abnormal return data as
in Section 4.2, and adding noise ni , drawn i.i.d. N(0,n2), to the true
abnormal returns. The two-step procedure is then applied to the data
as usual, to estimate θ and w. Simulations were carried out for four
values of n2 — 0.20, 0.40, 0.65, and 1.00 — corresponding to noise
levels of 20%, 40%, 65% and 100%, respectively (since var[ε] = 1).

Qualitative discussion of results. For brevity, we do not report the
complete simulation results but only provide a qualitative discussion
instead.

Noise in announcement effects does not affect estimates of cross-
sectional parameters θ under the two-step procedure since the pro-
cedure does not use announcement-effect data in estimation of θ .20

However, noise in estimated announcement effects does lead to larger
error terms in the second-step regression. Hence, second-step esti-
mates of w, while consistent, are now less precise and the average
t -statistics for w are smaller as a result.

For moderate amounts of noise, there is little impact on one’s in-
ferences. For instance, when w = 0.30, we found that an increase in

20 We also examined the effect of noise on other estimators of the conditional model that use
announcement effects in estimating cross-sectional parameters. Simulation evidence (based on
the maximum likelihood procedure for the case where there are both event and nonevent data)
shows that noise in announcement effects makes estimates of w less precise. However, there
was little effect on estimates of θ , whose distribution remained virtually unchanged for all levels
of noise from 20% to 100%. Thus, in the context of Equation (7), most information relevant to
cross-sectional estimation seems to be contained in whether firms announced an event or not,
rather than the associated announcement effects.
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noise from 0% to 40% reduces power (i.e., fraction of t -statistics ex-
ceeding 1.96) only from 64% to 52%. Thus, the two-step procedure
does stand up to moderate amounts of noise at levels typical of event
studies that use windows of a few days to measure announcement
effects.

5.1.4 Cross-sectional correlation in information. Thus far, we
have assumed information ψ to be i.i.d. across firms. What effect
does cross-sectional correlation have on the conditional model? Cross-
sectional correlation does not affect consistency of probit estimates of
θ , and by extension, second-step estimates of w. However, the t -
statistics for tests of significance could be inappropriate. We develop
some evidence on the direction of the potential bias.

Simulation methodology follows that of Section 4.2, with one change
— information ψi is sampled differently to artificially introduce cross-
sectional correlation into the data. This is accomplished by simulating
ψi , i = 1, 2, . . . ,n (n is the sample size), as

ψi = αc + ui

√
1− α2,

where (1) c is sampled from the normal distribution N(0,1) once
for each repetition; (2) ui , i = 1, 2, . . . ,n, is sampled i.i.d. N(0,1).
This procedure effectively produces a sample with (a) E(ψi)=0, and
(b) var(ψi)=1 and correlation E(ψiψj ) = α2, ∀i 6= j. We carried out
simulations for two values of α2 — 0.25 and 0.50, corresponding to
cross-sectional correlation of 25% and 50%, respectively. Apart from
this change, simulations exactly follow the procedure outlined in Sec-
tion 4.2.

Qualitative discussion of results. As in the previous section, we
only provide a qualitative discussion of simulation results.

The simulation results had two features of interest. First, point es-
timates and standard errors of both θ and w were quite close to the
values reported in Table 1. Second, standard errors of estimates of
w were 20% to 40% smaller than those reported in Table 1; that is,
estimates of w appeared to be more precise in the presence of cross-
sectional correlation. The standard errors were roughly equal to those
computed via the empirical distribution of estimates of w. Hence, the
lower standard error did reflect more-precise estimates of w.

To summarize the simulation results thus far, nonnormality and
cross-sectional correlation in private information appear to matter less
than imprecisely measured announcement effects. Noise in announce-
ment effects somewhat degrades second-step estimates of w, though
not significantly so for moderate amounts of noise.
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5.2 The conventional cross-sectional procedure
How does the traditional cross-sectional procedure perform when
data are generated as per the conditional model? We develop some
evidence on this question here.

Simulation methodology is similar to that of Section 5.1, with one
exception: here, we simulate only firms announcing event E. Abnor-
mal returns are then regressed on a constant term and regressors x1

and x2 to obtain regression coefficients β0 − β2 of the linear model,
Equation (12), and the associated t -statistics. Results are presented in
Table 3, for average event probabilities of 25% and 50%.

5.2.1 Discussion of results. Table 3 is best interpreted by com-
paring statistics for OLS regression coefficients β with corresponding
statistics for probit estimates of θ in Table 1.

To begin, observe that while regressors x do not satisfy the dis-
tributional assumptions of Proposition 1, our simulation results are
consistent with its implied comparative statics:
• Opposite sign: Average point estimates of β1 and β2 are signed

opposite to θ1 and θ2 everywhere.
• Attenuation: β1 and β2 are biased towards zero, relative to θ1 and

θ2. For instance, θ1 = -1 everywhere, but average point estimates of
β1 range from 0.12 to 0.57.
• More attenuation for smaller w: Consider results of panel A, for

instance. As w falls off from 0.75 to 0.30 (going upwards in the table),
mean β1 drops from 0.57 to 0.22.
•More attenuation for highly anticipated events: For instance, keep-

ing w fixed at 0.30, estimates of β1 drop from 0.21 to 0.12 as we go
from panel A (25% event probability) to panel B (50% event proba-
bility).

Second, compare the empirically estimated standard errors (see
column Std. error) with OLS standard errors implied in reported t -
statistics. For instance, consider in panel A the evidence for w = 0.30
and sample size = 100. The t -statistic for β1 is 0.62; the point estimate
of β1 is 0.21. Thus, the implied standard error produced by OLS is
0.21
0.62 = 0.33. This is equal to the empirical standard error, which is
based on the actual distribution of the simulated parameter estimates.
A similar correspondence is seen to hold for every regression coeffi-
cient in Tables 3. Consequently, the usual OLS standard errors seem
to be appropriate for carrying out significance tests for cross-sectional
parameters βk .

Finally, how does the linear regression measure up in terms of
power, compared to the conditional model? To judge the statistical
power of the two procedures, compare the standard errors and t -
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Table 3
Performance of conventional cross-sectional procedure

Panel A: Normally distributed information and 25% average event probability

Sample size = 100 Sample size = 250

True Estimated Std. Mean Std. Mean
parameter parameter Mean error t -stat Mean error t -stat

Correlation (w) = 0.30

θ0 = 1.00 β0 0.05 0.74 0.07 0.02 0.47 0.04
θ1 = −1.00 β1 0.21 0.33 0.62 0.22 0.20 1.05

100θ2 = 1.00 100β2 −0.22 0.33 −0.64 −0.23 0.20 −1.11

Correlation (w) = 0.50

θ0 = 1.00 β0 0.02 0.71 0.02 0.05 0.48 0.10
θ1 = −1.00 β1 0.39 0.32 1.26 0.39 0.22 1.86

100θ2 = 1.00 100β2 −0.38 0.29 −1.29 −0.38 0.19 −1.95

Correlation (w) = 0.75

θ0 = 1.00 β0 0.02 0.58 0.03 0.02 0.42 0.02
θ1 = −1.00 β1 0.57 0.25 2.21 0.57 0.18 3.25

100θ2 = 1.00 100β2 −0.57 0.26 −2.18 −0.56 0.18 −3.31

Panel B: Normally distributed information and 50% average event probability

Sample size = 100 Sample size = 250

True Estimated Std. Mean Std. Mean
parameter parameter Mean error t -stat Mean error t -stat

Correlation (w) = 0.30

θ0 = 1.00 β0 0.08 0.58 0.14 0.05 0.35 0.16
θ1 = −1.00 β1 0.17 0.38 0.47 0.19 0.20 0.89

100θ2 = 1.00 100β2 −0.19 0.32 −0.60 −0.18 0.23 −0.89

Correlation (w) = 0.50

θ0 = 1.00 β0 0.12 0.55 0.22 0.08 0.32 0.26
θ1 = −1.00 β1 0.30 0.35 0.90 0.32 0.20 1.50

100θ2 = 1.00 100β2 −0.30 0.33 −0.92 −0.31 0.22 −1.48

Correlation (w) = 0.75

θ0 = 1.00 β0 0.15 0.50 0.30 0.15 0.27 0.66
θ1 = −1.00 β1 0.47 0.29 1.57 0.47 0.16 2.70

100θ2 = 1.00 100β2 −0.47 0.28 −1.68 −0.48 0.17 −2.89

Table 3 presents statistics describing performance of the linear model when the true
event/abnormal return data are generated by the conditional model, Equation (7), in the text.

Event E is simulated to occur if and only if θ0 + θ1x1i + θ2x2i +ψi > 0, where θ0 = 1, θ1 = −1,
and θ2 = 0.01. Information ψi , i = 1, 2, . . . ,n (n is the sample size), is sampled i.i.d. normal,
N(0,1). Expected abnormal return, conditional on information ψi , is simulated as E (εi | ψi) = wψi .

In each simulation, we generate a sample of n firms announcing event E, and abnormal returns
thereto. We then estimate β0, β1, and β2 in the linear regression E (εi | E ) = β0 + β1x1i + β2x2i

by OLS. This process is repeated 400 times, and each set of 400 repetitions is done for (1) two
sample sizes (100 and 250) and (2) three values of w (0.30, 0.50, and 0.75). From each set of 400
simulations, we compute and report the following statistics: (1) Mean: the average parameter point
estimate; (2) Std. error : the standard error of parameter estimate, computed as the sample standard
deviation of the 400 point estimates; and (3) Mean t-stat : each simulation yields a t -statistic for
βj , j = 1, . . . , 3. Mean t -stat refers to the average of the 400 t -statistics.

Based on Section 2.1, we expect regression coefficients βi , i = 1, 2, to be (1) signed opposite
to θi and (2) attenuated, relative to θi (i.e., |βi | < |θi |).
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statistics for the βj , j = 1, 2, with those for corresponding probit
coefficients θj in Table 1.

On the one hand, the standard errors for the linear regression co-
efficients β1 and β2 are 30% to 40% smaller than those for the con-
ditional model estimates of θ1 and θ2. Even so, the t -statistics for the
linear regression coefficients are generally smaller. Thus, even though
the linear model produces smaller standard errors, it is less powerful
than the conditional model in picking up cross-sectional effects. In
practice, the gap between the two procedures’ performance is likely
to be even wider than indicated above, since announcement effects
are likely to be measured with error. With measurement error in an-
nouncement effects, t -statistics for cross-sectional parameters βj of the
linear model will be smaller, whereas those for the corresponding θj

of the two-step procedure will remain unchanged since the procedure
does not use announcement-effect data in cross-sectional parameter
estimation.

Attenuation — equivalently, the information in nonevent firms,
which is lost here — plays a central role in reducing the linear re-
gression’s power. As an illustration of this phenomenon, note that
based on Proposition 1, we expect little attenuation and hence more
power for the linear regression when w is large and the event is
highly informative (i.e., has a low probability). The simulation results
are consistent with this intuition: when the average event probability
is small (25%) and w is large (0.75), regression coefficients have the
largest t -statistics relative to all other parameter choices.

The lower power of the linear model suggests the following conjec-
ture: the statistical significance of the linear regression coefficients βj

serves as a lower bound on significance of the θj . In other words, the
linear regression is a conservative means of conducting cross-sectional
inferences. Hence, if one rejects the hypothesis βj at significance level
α, one also rejects the hypothesis θj = 0, at a significance level of at
least α. The generality of this conjecture is unknown and warrants
investigation in future work.

5.3 Conditional model without nonevent information
With both event and nonevent data, the conditional model is superior
to the usual OLS procedure and appears to be fairly robust along sev-
eral dimensions. Absent nonevent data, how does the model perform?
We develop some evidence here.21

21 Comments and suggestions of an anonymous referee have motivated and vastly improved much
of this section.
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We use the methodology described in Section 5.2 to simulate a
sample of firms announcing the event and use this data to estimate
the conditional model. However, estimation is a more delicate matter
in this setting. We discuss some issues that arise, before presenting
the simulation results.

With only event data, the conditional model may be estimated by
nonlinear least squares (NLS), applied to regression Equation (16), or
by maximum likelihood (ML). We began by experimenting with the
NLS estimator. This estimator displayed poor statistical properties (it
led to upward biased parameter estimates, and standard errors were
overstated by a factor of 8 through 10), and was computationally as
intensive as the (more-efficient) ML estimator. Accordingly, parameters
were estimated via maximum likelihood. This involves maximization
of the log-likelihood function

L(θ,w, σε) = −ln σε + ln n(ε/σε)+ ln N

(
θ ′x + wε/σε√

1− w2

)
−ln N (θ ′x). (17)

The optimization process requires choices along several dimen-
sions. Below, we briefly describe the alternatives experimented with,
as well as the decisions made in the final empirical work.

1. Starting values: Two sets of starting values were used to initialize
the iterations. In the first “benchmark” set, starting values were set
equal to the true parameter values. In the second set, all parameters
were initialized to zero, except the parameter σε , which was set to
the sample standard deviation of announcement effects. Simulation
results from the two sets were not appreciably different.

2. Optimization algorithm: We experimented with three algorithms:
(1) Gauss-Newton, (2) Davidon-Fletcher-Powell (DFP), and (3)
Broyden-Fletcher-Goldfarb-Shanno (BFGS) techniques. The first of
these led to repeated problems of nonconvergence or noninvertibility
of the Hessian, causing the optimization routine to abort. By contrast,
the DFP and BFGS algorithms were better behaved, and the latter was
chosen for empirical work.

3. Gradient and Hessian: Analytical (not numerical) gradients were
employed in the iterations, as these improved computational and con-
vergence properties. T -statistics are based on standard errors using the
analytical Hessian.

4. Convergence and exit criteria: After some experimentation, we
deemed the optimization routine to have converged when the relative
change in all gradients was less than 10−4. The maximum number of
iterations was set at 175, beyond which there was no appreciable
change in convergence behavior.
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One final point deserves mention. Observe that the maximand,
Equation (17), contains the term

√
1− w2. For the maximand to be

computable, we require that −1 < w < 1, a constraint that must be
imposed at all stages in the optimization. To get around this difficulty,
we reparametrized the problem by setting w1 = w√

1−w2
; equivalently

w = w1√
1+w2

1

. The advantage of this formulation is that unlike w, pa-

rameter w1 is not constrained to lie in (-1,1), freeing the optimization
process of this additional constraint. The best set of results obtained
with these settings, and estimation was carried out using the OPTMUM
routine in GAUSS.

Discussion of results. For both sets of starting values, our experience
with regard to convergence was satisfactory for all but one set of
parameter values.22 Table 4 reports the results for the subsample of
simulations that did converge, and we recognize the potential bias
built in favor of conditional methods in interpreting these results.

Two facts emerge from the simulation results. First, the t -statistics
reported in Table 4 are much smaller than those in Table 1. Thus, the
absence of nonevent data has a severe negative impact on the con-
ditional model’s performance. Why are nonevent data so crucial to
the conditional model’s performance? We consider two explanations
in this context. First, by using nonevent and event data rather than
just event data only, one effectively increases the sample size, and
this leads to greater statistical power. A second possibility is that the
use of nonevent data expands the type of information being used in
estimation. If the type of information represented by nonevent firms is
useful in estimation, more powerful inferences should result. Indeed,
our analysis supports the second conjecture. In all our simulations, the
sample size, that is, the total number of firms (event plus nonevent
firms) is fixed (at 100 or 250). Nevertheless, the conditional model’s
performance depends on the type of data within the sample: it per-
forms better when there are both event and nonevent data rather than
event data only.

The simulation results also indicate that the statistical properties
of the ML estimator are somewhat unsatisfactory. Specifically, (1)
parameter estimates are upward-biased, and (2) standard errors are
slightly understated. The upshot is that the ML t -statistics appear to

22 Aberrant behavior was displayed in only one instance, when w was small (0.30), and the sample
was small (100). Here, only 60% of the iterations converged, and the reason for such behavior
is intuitively straightforward. When w = corr(ε, ψ) is small, little useful information is contained
in announcement effects. Thus, the likelihood function becomes flat with respect to θ [this may
be verified by allowing w → 0 in Equation (17)], and location of extrema becomes difficult,
especially in small samples.
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Table 4
Performance of conditional model with truncated samples 50% average event probability

Sample size = 100 Sample size = 250

Std. Mean Std. Mean
Parameter Truth Mean error t -stat Mean error t -stat

w = 0.30

w1 = w√
1−w2

0.31 0.93 1.19 1.39 0.67 0.79 1.91

θ0 1.00 2.43 11.98 2.41 0.91 3.32 0.37
θ1 −1.00 −2.24 6.09 −0.73 −1.19 2.39 −0.79

100θ2 1.00 2.46 4.96 0.69 1.90 2.99 0.99

w = 0.50

w1 = w√
1−w2

0.58 1.12 1.39 1.69 0.89 0.81 2.37

θ0 1.00 1.52 3.69 0.66 1.17 1.84 1.02
θ1 −1.00 −1.56 2.15 −0.96 −1.37 1.34 −1.51

100θ2 1.00 1.60 2.06 0.99 1.17 1.08 1.40

w = 0.75

w1 = w√
1−w2

1.13 1.45 1.07 1.91 1.17 0.54 2.77

θ0 1.00 0.91 1.29 1.03 0.90 0.85 1.52
θ1 −1.00 −1.20 0.82 −1.54 −1.16 0.63 −2.28

100θ2 1.00 1.53 1.00 1.45 1.17 0.54 2.21

Table 4 presents statistics describing performance of the conditional model, Equation (7), in the
text, when data is available only for the firms announcing the event.
Event E is simulated to occur if and only if θ0+ θ1x1i + θ2x2i +ψi > 0, where θ0 = 1, θ1 = −1, and
θ2 = 0.01. Information ψi , i = 1, 2, . . . ,n (n is the sample size), is sampled i.i.d. normal, N(0,1).
Expected abnormal return, conditional on information ψi , is simulated as E (εi | ψi) = wψi .
In each simulation, we generate a sample of n firms announcing event E, and abnormal returns
thereto. We then estimate parameters w1 = w√

1−w2
, θ0, and θ1, θ2 by maximum likelihood, the

likelihood function being defined in Equation (17) in the text. This process is repeated 400 times,
and each set of 400 repetitions is done for (1) two sample sizes (100 and 250) and (2) three
values of w (0.30, 0.50, and 0.75). From each set of 400 simulations, we compute and report the
following statistics: (1) Mean: the average parameter point estimate; (2) Std. error : the standard
error of parameter estimate, computed as the sample standard deviation of the 400 point estimates;
and (3) Mean t-stat : each simulation yields a t -statistic for parameters w1 and θj , j = 1, . . . , 3.
Mean t -stat refers to the average of these t -statistics.

be somewhat larger than their true values. As an illustration of this
phenomenon, consider the instance when the sample size is 100 and
w = 0.50. Here, the average ML point estimate of θ1 is -1.56, and the
average t -statistic for θ1 is -0.96, implying that the ML standard error
is about 1.56

0.96 = 1.62. However, the true standard error (see column
Std. error) is larger at 2.15. Thus, the reported ML t -statistic appears
to be overstated. From Table 4, we see that this is more of an issue
for small w and less so for larger w and sample sizes.

Despite this upward bias in the ML t -statistics, the t -statistics are
no better than those produced by OLS (see Table 3, panel B). In this
context, one situation — w = 0.75 and sample size = 250 — is some-
what interesting. For this parameter set, every one of the conditional
model simulations converged; even so, ML t -statistics are 25% smaller
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than the corresponding OLS counterparts! Thus, absent nonevent data,
there is little evidence that the specification of the conditional model
analyzed here has any practical value, relative to the much simpler
OLS procedure.

6. Conclusions

Conditional methods offer an interesting perspective of event studies.
Such methods are derived in the context of a well-defined economic
equilibrium and have simple and appealing intuition: they relate an-
nouncement effects to the unexpected information revealed in events.
Hence, conditional methods are potentially attractive means of con-
ducting event studies.

The conditional model proposed by Acharya (1988) is a natural
choice for many corporate events. When is it an empirically valuable
tool? We find that it performs well only when one has, in addition
to data on firms announcing the event, a set of nonevent firms, that
is, firms that were partially anticipated to announce but chose not
to announce the event in question. If such data are available, the
conditional model is a valuable means of inference since it allows one
to exploit nonevent information — which lies unused under traditional
methods — in a straightforward manner.

In such settings, a simple two-step procedure appears to be an at-
tractive method of estimating the conditional model. This estimator
has three useful properties as a means of conducting cross-sectional
tests in event studies. First, cross-sectional parameters are estimated
without using abnormal return information. Thus, the usual data prob-
lems associated with event studies — event-date uncertainty, clus-
tering of event dates, etc. — which are known to adversely afflict
inferences via conventional procedures, do not affect cross-sectional
inferences via the two-step procedure. Second, our evidence suggests
cross-sectional inferences are not severely affected by incorrect dis-
tributional assumptions. Nevertheless, if this is a concern, there does
exist a body of literature for distribution-free estimation that may be
employed. Finally, cross-sectional inferences via the two-step proce-
dure are also valid for other conditional models [e.g., that of Eckbo,
Maksimovic, and Williams (1990)] discussed in this article. Thus, when
nonevent data are available, the two-step procedure appears to be a
desirable way of estimating the conditional model.

However, in most practical situations, nonevent data — a sample
of firms that chose not to announce the event, the timing of this
nonevent, and cross-sectional data and announcement effects at the
time markets learn of the nonevent — are not available. One must
then work only with firms that have announced the event in ques-
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tion. Here, we find that the conditional model becomes computa-
tionally burdensome and less powerful, even when efficiently esti-
mated.

It is precisely under these circumstances that the results concern-
ing traditional methods assume the greatest force, and we make two
points in this context. First, regression coefficients obtained via the tra-
ditional linear regression are proportional to the true cross-sectional
parameters, under weak conditions. Second, OLS standard errors ap-
pear to be appropriate for testing the significance of cross-sectional
parameters. Together, the two results imply that the traditional OLS
procedure may be used for carrying out cross-sectional inferences,
though the coefficients are potentially inconsistently estimated. These
results also provide an equilibrium justification for using the standard
procedures in practice.

How useful are the results, from a practical perspective? Not sur-
prisingly, OLS is less powerful than the conditional model when both
event and nonevent data are available. However, when one has event
data only, OLS appears to be a simple and effective substitute for the
conditional model, even when the latter is efficiently estimated.

Thus, our results suggest that when the necessary nonevent data are
available, inferences should be based on conditional methods. If not,
we suggest that the traditional cross-sectional procedure be used and
the associated t -statistics be interpreted as conservative lower bounds
on the true significance level of the parameters.

Appendix

Proof of Proposition 1. Following Goldberger (1981) or Maddala (1983),
we first reparametrize the selection equation so that x and τ have
mean zero. With this reparametrization, event E occurs if and only if
τ = θ ′x + ψ > c, where

c = −θ0 −
k∑

j=1

θj E (xj ) (18)

and E (xj ) denotes the mean of the original regressor xj . The proof
simply consists of working through the normal equation defining the
OLS estimator of β, for a sample of firms announcing E . We begin by
stating some results that aid in this process.

The population regression of τ on x is given by

θ = 6−1
x cov(x, τ ). (19)
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With E (τ ) normalized to zero, the population mean of x , conditional
on τ , is given by

E (x | τ) = ατ, (20)

while the variance of x , conditional on τ , is

V = Var(x | τ) = 6x − α α′s2, (21)

where α and s2 are defined as

α = cov(x, τ )

s2
= 6xθ

s2
, (22)

and

s2 = var (τ ) = θ ′6xθ + 1. (23)

Define R2 and t as

R2 = var (θ ′x)
s2

= θ ′6xθ

θ ′6xθ + 1
, (24)

and

t = var (τ | E )
var (τ )

= var (τ ∗)
s2

, (25)

where the asterisk denotes the conditioning τ > c. R2 is the “ex-
plained variance” in the population regression of τ on x .

The principal fact on which the proportionality result rests is as
follows: Selection does not alter the conditional distribution of x , given
τ [Chung and Goldberger (1984)]. Hence, for the sample of firms
announcing E, we have

E (x∗ | τ) = ατ, (26)

and

var (x∗ | τ) = V , (27)

where V , α are defined in Equations (21) and (22). With these results
in hand, we can solve for the coefficients β in the regression of event-
date abnormal returns on regressors x . These coefficients are defined
by the normal equation

6∗xβ = cov(x∗, ε∗), (28)

where ε∗ is the event-date abnormal return, conditional on announce-
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ment of E (i.e., τ > c). Consider first the left-hand side of Equa-
tion (28). We have from the definition of 6∗x ,

6∗x = varτ (E
∗(x | τ))+ Eτ (var ∗(x | τ)),

= var (ατ ∗)+ V [from Equations (26) and (27)],

= αvar (τ ∗)α′ +6x − α α′s2 [from Equation (21)],

= α(t s2)α′ +6x − α α′s2 [from Equation (25)],

= 6x − α α′(1− t)s2. (29)

To simplify the right-hand side of Equation (28), use the bivariate
normality of ψ and ε to get

E (ε | ψ) = πψ = π(τ − θ ′x),
and

E (ε | E ) = E (ε∗) = π(τ ∗ − θ ′x∗).
Using this in the right-hand side of Equation (28), we have

cov(x∗, ε∗) = cov(x∗, π(τ ∗ − θ ′x∗)),
= πcov(x∗, τ ∗)− πcov(x∗, θ ′x∗),
= παt s2 − π6∗xθ [using Equation (26)],

= παt s2 − π [6x − α α′(1− t)s2
]
θ [using Equation (29)].

Substituting for α using Equation (22), we have

cov(x∗, ε∗) = π

(
6xθ

s2

)
t s2 − π6xθ + πs2θ

(
6xθ

s2

)(
θ ′6x

s2

)
(1− t),

= π6xθ

[
t − 1+

(
θ ′6xθ

s2

)
(1− t)

]
,

= π6xθ
[
t − 1+ R2(1− t)

]
[using Equation (24)],

= −π(1− R2)(1− t)6xθ. (30)

Finally, using Equations (29) and (30) in normal Equation (28), we
have

β
[
6x − α α′(1− t)s2

] = π6xθ(1− R2)(1− t)

and

β

[
6x −

(
6xθ

s2

)(
θ ′6x

s2

)
(1− t)s2

]
= −π6xθ(1− R2)(1− t), (31)

where the last equation obtains by substituting for α using Equa-
tion (22). Multiplying both sides of Equation (31) by θ ′, we have, as

35



The Review of Financial Studies / v 10 n 1 1997

required,

(θ ′6x)

{
β

[
1−

(
θ ′6xθ

s2

)
(1− t)

]}
= θ ′6x

{[−πθ(1− R2)(1− t)
]}
,

⇒ β = −πθ (1− R2)(1− t)

t + (1− R2)(1− t)
,

= −πθµ. (32)

Remark. The intercept term β0 can be computed as E (ε∗ − β ′x∗).
Using (1) Proposition 1 for (β1, . . . , βk) (2) E (τ ∗) = λE (−c) and
E (x∗) = ατ ∗, we obtain β0 = πλE (−c)(1 − µR2), where c is defined
in Equation (18). Also, while the proof pertains to conditional model
defined by Equation (7), an analogous proportionality result may be
obtained in similar fashion for encompassing specification, Equation
(11), as well.

Proof of Lemma 1: Result (1). The result 0 < µ < 1 is an immediate
consequence of 0 < t,R2 < 1. The bounds on R2 follow from its
definition, Equation (24); those for T need some argument. From
Equation (25), the definition of t , we have

t = var (τ | E )
var (τ )

= var (τ | τ > c)

s2
, (33)

= var
(τ

s
| τ

s
>

c

s

)
= var

(
z | z > c

s

)
, (34)

where z = τ
s is standard normal (multivariate normality of x is being

invoked here). But if z is standard normal, 0 < var (z | z > c
s ) < 1,

[see Greene (1993), and footnote 11 in the text]. Therefore, 0 < t < 1.

Proof of Lemma 1: Result (2). For highly anticipated events, we show
that t is large. As ∂µ

∂t < 0, it follows that µ is small for such events.
Accordingly, consider the following facts:

Fact 1: Event E occurs if and only if θ0+
∑k

j=1 θj xj +ψ > c, where
c is defined in Equation (18). Hence, the smaller the value of c, the
greater the average probability of E.

Fact 2: From Equation (34), if z is standard normal, t = var (z |
z > c

s ) = var (z | z < − c
s ), where the last equality follows from

symmetry. From Goldberger (1983),
∂var (z |z<− c

s )

∂c = ∂t
∂c < 0.

From Facts 1 and 2, we have the following. For highly anticipated
events, c is small (from Fact 1) and t is large (as ∂t

∂c < 0 from Fact 2).

But large t implies small µ since ∂µ

∂t < 0, using Equation (32). Thus,
for highly anticipated events, µ is small, as claimed.
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